Mixed Models for Clustered Binary Outcomes

Don Hedeker Department of Public Health Sciences Biological Sciences Division University of Chicago

hedeker@uchicago.edu

Hedeker, D. (2005). Generalized linear mixed models. In B. Everitt & D. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. Wiley.

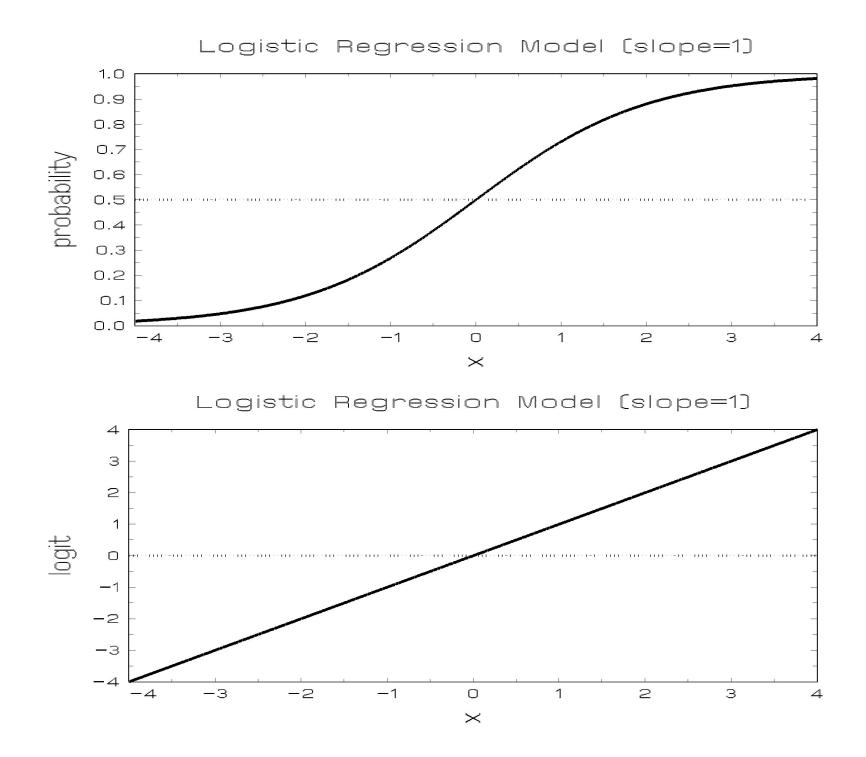
This work was supported by National Institute of Mental Health Contract N44MH32056.

Multilevel models for categorical outcomes

- dichotomous outcomes
 - mixed-effects logistic regression
- \bullet ordinal outcomes
 - mixed-effects ordinal logistic regression
 * proportional odds model
 * partial or non-proportional odds model
- discrete or grouped time-to-event data
 - mixed-effects dichotomous or ordinal regression
 - replace logistic link with complementary log-log link to yield proportional (and non-proportional) hazards models

Logistic Regression Model

$$\log\left[\frac{P(Y_i=1)}{1-P(Y_i=1)}\right] = \boldsymbol{x}'_i \boldsymbol{\beta}$$


• Dichotomous outcome (Y = 0 absence, Y = 1 presence).

• Function that links probabilities to regressors is the logit (or log odds) function $\log [P/(1-P]]$. Logit is called the link function.

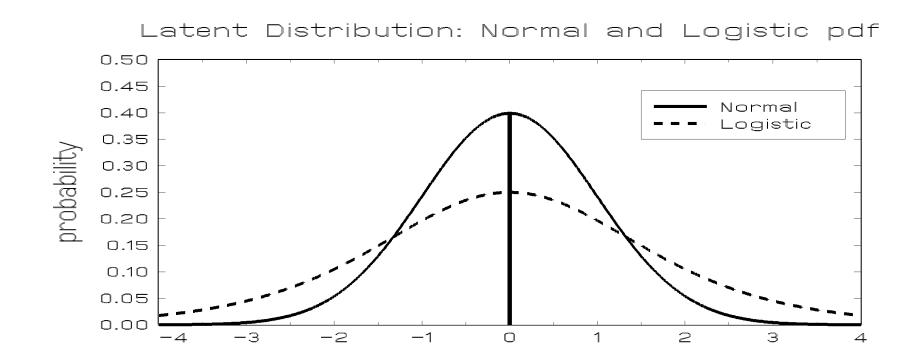
The model can be written in terms of probabilities:

$$P(Y_i = 1) = \frac{1}{1 + \exp(-\boldsymbol{x}'_i \boldsymbol{\beta})}$$

• Model is a linear model for the logits, not for the probabilities. Logits can take on any values between negative and positive infinity, probabilities can only take on values between 0 and 1.

The model can also be written in terms of the odds:

$$\frac{P(Y_i = 1)}{1 - P(Y_i = 1)} = \exp(\boldsymbol{x}'_i \boldsymbol{\beta})$$


 $\exp \beta = \text{change in odds for } Y \text{ per unit change of } x$

- $\beta = 0$ yields no effect on the odds
- $\beta > 0$ increases odds Y is present with increasing x
- $\beta < 0$ decreases odds Y is present with increasing x

Dichotomous Response and Threshold Concept

Continuous y_i - an unobservable latent variable - related to dichotomous response Y_i via "threshold concept"

Response occurs $(Y_i = 1)$ if $\gamma < y_i$ otherwise, a response does not occur $(Y_i = 0)$

The Threshold Concept in Practice

"How was your day?" (what is your satisfaction level today?)

• Satisfaction may be continuous, but we usually emit a dichotomous response:

Model for Latent Continuous Responses

Consider the model with p covariates for the latent response strength y_i (i = 1, 2, ..., N):

$$y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + \varepsilon_i$$

- probit: $\varepsilon_i \sim \text{standard normal (mean=0, variance=1)}$
- logistic: $\varepsilon_i \sim \text{standard logistic (mean=0, variance} = \pi^2/3)$

 $\Rightarrow \beta$ estimates from logistic regression are larger (in abs. value) than from probit regression by approximately $\sqrt{\pi^2/3} = 1.8$

Underlying latent variable

- useful way of thinking of the problem
- \bullet not an essential assumption of the model

Random-intercept Logistic Regression Model

Consider the model with p covariates for the response Y_{ij} for subject j $(j = 1, 2, ..., n_i)$ in cluster i (i = 1, 2, ..., N):

$$\log \left[\frac{P(Y_{ij} = 1 \mid v_{0i})}{1 - P(Y_{ij} = 1 \mid v_{0i})} \right] = \mathbf{x}'_{ij} \mathbf{\beta} + v_{0i}$$

where

$$Y_{ij}$$
 = dichotomous response for subject j in cluster i

 $\boldsymbol{x}_{ij} = (p+1) \times 1$ covariate vector (includes 1 for intercept) $\boldsymbol{\beta} = (p+1) \times 1$ vector of unknown parameters

 v_{0i} = cluster effects distributed $\mathcal{NID}(0, \sigma_v^2)$

Characteristics of $v_{0i} \sim \mathcal{NID}(0, \sigma_v^2)$

- separates model from ususal (fixed-effects) multiple logistic regression model
- takes on $i = 1, 2, \ldots, N$ values
- assess impact of cluster i on individual outcome $logit_{ij}$, represents effect of subject clustering
- common for each cluster member, but changes for each cluster
- if $v_{0i} = 0$, then cluster has no effect for cluster *i*
- if $v_{0i} = 0$ for all clusters, cluster structure has no impact on individual data ($\sigma_v^2 = 0$)
 - $-\operatorname{no}$ need for multilevel approach
 - ordinary logistic regression is OK
- if subject clustering has strong effect, estimates of $v_{0i} \neq 0$ and σ_v^2 will increase from 0

Model for Latent Continuous Responses

Consider the model with p covariates for the $n_i \times 1$ latent response strength y_{ij} :

$$y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_{0i} + \varepsilon_{ij}$$

where assuming

- $\varepsilon_{ij} \sim$ standard normal (mean 0 and $\sigma^2 = 1$) leads to multilevel probit regression
- $\varepsilon_{ij} \sim$ standard logistic (mean 0 and $\sigma^2 = \pi^2/3$) leads to multilevel logistic regression

Underlying latent variable

- not an essential assumption of the model
- useful for obtaining intra-class correlation (r)

$$r = \frac{\sigma_v^2}{\sigma_v^2 + \sigma^2}$$

and for design effect (d)

$$d = \frac{\sigma_v^2 + \sigma^2}{\sigma^2} = 1/(1-r)$$

ratio of actual variance to the variance that would be obtained by simple random sampling (holding sample size constant)

Scaling of regression coefficients

Fixed-effects model

 $\pmb{\beta}$ estimates from logistic regression are larger (in abs. value) than from probit regression by approximately

$$\sqrt{\frac{\pi^2/3}{1}} = 1.8$$

because

- $V(y) = \sigma^2 = \pi^2/3$ for logistic
- $V(y) = \sigma^2 = 1$ for probit

Mixed-effects model

 β estimates from mixed-effects model are larger (in abs. value) than from fixed-effects model by approximately

$$\sqrt{d} = \sqrt{\frac{\sigma_v^2 + \sigma^2}{\sigma^2}}$$

because

- $V(y) = \sigma_v^2 + \sigma^2$ in mixed-effects model
- $V(y) = \sigma^2$ in fixed-effects model

difference depends on size of random-effects variance σ_v^2

Within-Clusters / Between-Clusters models <u>Within-clusters model</u> - level 1 $(j = 1, ..., n_i)$

$$\frac{\text{observed response}}{\log \left[\frac{P(Y_{ij} = 1 \mid v_{0i})}{1 - P(Y_{ij} = 1 \mid v_{0i})}\right]} = b_{0i} + b_{1i} Sex_{ij}$$

$$\frac{\text{latent response}}{y_{ij}} = b_{0i} + b_{1i} Sex_{ij} + \varepsilon_{ij}$$

<u>Between-clusters model</u> - level 2 (i = 1, ..., N)

$$b_{0i} = \beta_0 + \beta_2 Grp_i + v_{0i}$$

$$b_{1i} = \beta_1 + \beta_3 Grp_i$$

$$v_{0i} \sim \mathcal{NID}(0, \sigma_v^2)$$
 and $\varepsilon_{ij} \sim \mathcal{LID}(0, \pi^2/3)$

Effects of a School-based Intervention

The Television School and Family Smoking Prevention and Cessation Project (Flay, *et al.*, 1988); a subsample:

- \bullet sample 1600 7th-graders 135 classes 28 schools
 - -1 to 13 classes per school, 2 to 28 students per class
- *outcome* knowledge of the effects of tobacco use
- $\bullet\ timing$ students tested at pre and post-intervention
- design schools exposed to
 - -a social-resistance classroom curriculum (CC)
 - -a media (television) intervention (TV)
 - $-\operatorname{CC}$ combined with TV
 - $-\,\mathrm{a}$ no-treatment control group

Main question of interest:

• Influence of the intervention on the tobacco health knowledge scores (THKS) ?

Challenges in the analysis:

- outcome variable (THKS) is number correct of 7 items
- controlling for intra-school and intra-class variability
- potential explanatory variables are at different levels

Tobacco and Health Knowledge Scale Post-Intervention Scores ≥ 3 (out of 7) Subgroup Descriptive Statistics

	CC	= no	CC =	= yes
	TV=no	TV=yes	TV=no	TV=yes
n	421	416	380	383
proportions	.416	.483	.632	.603
odds	.711	.935	1.714	1.520
logits	341	067	.539	.419

Within-Clusters / Between-Clusters components

<u>Within-clusters model</u> - level 1 $(j = 1, ..., n_i \text{ subjects})$ $logit_{ij} = b_{0i}$

<u>Between-clusters model</u> - level 2 (i = 1, ..., N clusters) $b_{0i} = \beta_0 + \beta_1 C C_i + \beta_2 T V_i + \beta_3 (C C_i \times T V_i) + v_{0i}$ $v_{0i} \sim \mathcal{NTD}(0, \sigma_v^2)$

$$\beta_0$$
 = THKS logit for CC=no TV=no subgroup

$$\beta_1$$
 = logit diff. between CC=yes vs CC=no (for TV=no)

$$b_{0i} = \beta_0 + (\beta_1 + \beta_3 T V_i) C C_i + \beta_2 T V_i + v_{0i}$$

 $\beta_2 = \text{logit diff. between TV=yes vs TV=no (for CC=no)}$

$$b_{0i} = \beta_0 + (\beta_2 + \beta_3 C C_i) T V_i + \beta_1 C C_i + v_{0i}$$

 β_3 = difference in logit attributable to interaction

 v_{0i} = random cluster deviation

note: interpretation depends on coding of variables, and β s are adjusted for the cluster effects (cluster-specific effects)

3-level model

 $\frac{Within-classrooms (and schools) model}{(k = 1, \dots, n_{ij} \text{ students})} - level 1$

$$logit_{ijk} = b_{0ij}$$

 $\frac{Between-classrooms (within-schools) model}{(j=1,\ldots,n_i \text{ classrooms})} - level 2$

$$b_{0ij} = b_{0i} + v_{0ij}$$

<u>Between-schools model</u> - level 3 (i = 1, ..., N schools)

 $b_{0i} = \beta_0 + \beta_1 C C_i + \beta_2 T V_i + \beta_3 (C C_i \times T V_i) + v_{0i}$

$$v_{0ij} \sim \mathcal{NID}(0, \sigma_{v(2)}^2) \text{ and } v_{0i} \sim \mathcal{NID}(0, \sigma_{v(3)}^2)$$

$$\beta_0$$
 = THKS logit for CC=no TV=no subgroup

$$\beta_1$$
 = logit diff. between CC=yes vs CC=no (for TV=no)

$$\beta_2$$
 = logit diff. between TV=yes vs TV=no (for CC=no)

$$\beta_3$$
 = difference in logit attributable to interaction

$$v_{0ij}$$
 = random classroom deviation

$$v_{0i}$$
 = random school deviation

• Under SSI, Inc > "SuperMix (English)" or "SuperMix (English) Student"

• Under "File" click on "Open Spreadsheet"

File Help	
New Spreadsheet	Ctrl+N
Open Spreadsheet	Ctrl+O
Import Data File	Ctrl+I
Exit	

• Open C:\SuperMixEn Examples\Workshop\Binary\tvsfpors.ss3 (or C:\SuperMixEn Student Examples\Workshop\Binary\tvsfpors.ss3)

Look in: 🔒 Binar	У	-	🗕 🔁 📑 🖬	
Name	*		Date modified	T
SCHIZX1.ss3			5/18/2007 12:12 AM	S
tvsfpors.ss3	5/18/2007 12:11 AM			
٠ [m			F
	III Doors.as3		Open	,

$C:\SuperMixEn\ Examples\Workshop\Binary\tvsfpors.ss3$

			(T	T			14		
	(A)_School	(B)_Class	(C)_THKSor		(E)_Intropt	(F)_PreTHK	(G)_CC	(H)_TV	(I)_CC*TV
1	403	403101	3	1	1	2	1	0	0
2	403	403101	4	1	1	4	1	0	0
3	403	403101	3	1	1	4	1	0	0
4	403	403101	4	1	1	3	1	0	0
5	403	403101	4	1	1	3	1	0	0
6	403	403101	3	1	1	4	1	0	0
7	403	403101	2	0	1	2	1	0	0
8	403	403101	4	1	1	4	1	0	0
9	403	403101	4	1	1	5	1	0	0
10	403	403101	4	1	1	3	1	0	0
11	403	403101	3	1	1	3	1	0	0
12	403	403101	4	1	1	3	1	0	0
13	403	403101	3	1	1	1	1	0	0
14	403	403101	4	1	1	2	1	0	0
15	403	403101	2	0	1	2	1	0	0
16	403	403101	4	1	1	1	1	0	0
17	403	403101	4	1	1	4	1	0	0
18	403	403101	3	1	1	3	1	0	0
19	403	403101	3	1	1	0	1	0	0
20	403	403101	4	1	1	3	1	0	0
21	403	403102	2	0	1	0	1	0	0
22	403	403102	4	1	1	1	1	0	0
23	403	403102	3	1	1	5	1	0	0
24	404	404101	3	1	1	1	1	1	1
25	404	404101	4	i	1	2	i	1	1
26	404	404101	2	Ó		4	i	1	1
27	404	404101	3	1	1	3	1	1	1
28	404	404101	2	, O	1	1	1	1	1

Under "File" click on "Open Existing Model Setup"

File	Edit Window Help	
	New Project	Ctrl+N
	Import Data File	Ctrl+I
	Close	
	New Model Setup	Ctrl+W
	Open Existing Model Setup	Ctrl+E
	New Syntax File	
	Open Syntax File	
	Open Text File	
	Data-based Graphs	•
	Open Graph	Ctrl+G
	Save	Ctrl+S
	Save As	
	Exit	

Open C:\SuperMixEn Examples\Workshop\Binary\tvbc.mum (or C:\SuperMixEn Student Examples\Workshop\Binary\tvbc.mum)

Organize 🔻 🛛 New folde	er) · · · · · · · · · · · · · · · · · · ·
☆ Favorites	Name	Date modified	Туре	Size
Nesktop	schizb1.mum	1/2/2015 9:34 AM	MUM File	3 KB
\rm Downloads	schizb2.mum	5/18/2007 12:13 AM	MUM File	4 KB
🖳 Recent Places	TVBC.mum	5/18/2007 12:14 AM	MUM File	4 KB
	TVBS.mum	5/18/2007 12:14 AM	MUM File	4 KB
Libraries Documents Music Pictures Videos Computer Cocal Disk (C:) Qroups (\phsfile	TVBSC.mum	5/18/2007 12:15 AM	MUM File	4 KB

Note "Dependent Variable Type" should be "binary"

🛃 Model Setup: TVBC.mur	n				×
Configuration	tarting Values <u>P</u> atterns	<u>A</u> dva	nced <u>L</u> inear Transforms	1	
Title 1: TVSFP binary outc	ome				
Title 2: Students in Classro	oms model				
Dependent Variable Type:	binary	-	Level-2 IDs:	Class	-
Dependent Variable:	THKSbin	•	Level-3 IDs:		3
Categories:	Value 1 0 2 1		Write Bayes Estimates: Convergence Criterion: Number of Iterations:	no	
Missing Values Present:	false	•	Perform Crosstab	pulation: no	3
			Output Type:	standard 💽	-
Select the form of	the dependent variable. T	he op	tions on the screens will c	change as required.	

For the moment, unselect $\ensuremath{\texttt{PreTHKS}}$ as an explanatory variable

	1	Patterns Advanced Linear Transforms
Available School	E 2	Explanatory Variables E L-2 Random Effects 2 CC Image: Constraint of the second
Class		
THKSord	FF	
[HKSbin	ΓĒ	
ntropt		
PreTHKS	FF	
30		
٢V		
CC*TV		Include Intercept
	Ŷ	
		Include Intercept
		Include Intercept

Note "Optimization Method" should be "adaptive quadrature"

🕺 Model Setup: TVBC.n	num			
<u>C</u> onfiguration ⊻ariables	Starting Values	Patterns <u>A</u> dvanced	l Linear Transforms	
– General Settings Unit Weighting:	equal	-		
Optimization Method: Number of Quadrature		ure 🔽		
 Dependent (Binary) Var Distribution Model: 			Function Model: logis	tic
Estimate Scale:	р г	•	r ancien model. piogis	
		elect the optimization e default is adaptive c		

TVBC.out

			X
--	--	--	---

.

Ξ

	5 11	n Classro	ooms m	odel	=0						
	1	Model and	d Data	Desc	criptions	з					
Samplin	ng I	Distribu	tion				=	Bern	oulli		
Link Fu	unct	tion					=	Logi	stic		
PROB (St	1006	ess)= 1.(0/[1.0	+EXP	(-ETA)]						
Number	of	Level-2	Units					135			
Number	of	Level-1	Units					1600			
Number	of	Level-1	Units	per	Level-2	Unit	=				
20	3	1000	9	5		11		10	15	12	12
21	10		19	2	4	21		16	15	13	2
13	1	12	18	21	17	16		15	16	21	21
17	3	2	15	7	24	22		15	19	7	12
6	11	7	7	8	3	5		в	3	8	9
2	11	9	21	13	12	12		14	9	6	11
12	11	6	6	14	10	14		2	3	2	4
6	10	14	11	6	22	4		7	22	18	23
14	5	14	28	15	15	11		12	11	11	15
24	20	15	6	8	14	5		11	9	17	14
17	15	6	7	14	10	14		18	4	9	7
15	11	10									
O===== Desc O===== Variab:		ptive st		cs fo	or all th	ne va		ables	in the	Sta	
THKSbin				.0000		.0000			.4706		.4993
THKSbin				.0000		.0000			.5294		. 4993
interce	ept			.0000		. 0000			.0000		.0000
CC			1.1	.0000		.0000			.4769		.4996
TV				.0000		. 0000			.4994		.5002
CC*TV			0	.0000	0 1	.0000		0	.2394	0	.4268

TVBC.out

| Optimization Method: Adaptive Quadrature |

Number	of	quadrature points =	25
Number	of	free parameters =	5
Number	of	iterations used =	4

-21nL (deviance statistic) =	2138.14940
Akaike Information Criterion	2148.14940
Schwarz Criterion	2175.03819

Estimated regression weights

- - X

A.

Ε

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept	-0.3839	0.1400	-2.7418	0.0061
CC	0.8872	0.2032	4.3657	0.0000
TV	0.2322	0.1987	1.1686	0.2426
CC+TV	-0.3243	0.2870	-1.1302	0.2584

Odds Ratio and 95% Odds Ratio Confidence Intervals

			Boun	ds
Parameter	Estimate	Odds Ratio	Lower	Upper
intercept	-0.3839	0.6812	0.5177	0.8963
CC	0.8872	2.4284	1.6305	3.6167
TV	0.2322	1.2614	0.8545	1.8621
CC*TV	-0.3243	0.7230	0.4120	1.2689

Estimated level 2 variances and covariances

0.0016	
	F.

🚰 TVBC.out

..... Calculation of the intracluster correlation _____ residual variance = pi*pi / 3 (assumed) cluster variance = 0.2745 intracluster correlation = 0.2745 / (0.2745 + (pi*pi/3)) = 0.077 Population Average Estimates Standard Estimate Error z Value P Value Parameter _____ ---------------------0.3608 0.1315 -2.7436 0.0061 intercept CC 0.8340 0.1916 4.3531 0.0000 TV 0.2183 0.1871 1.1671 0.2432 CC+TV 0.2703 -1.1285 0.2591 -0.3050 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Lower Parameter Estimate Odds Ratio Upper ---------------_____ -0.3608 0.6971 0.5387 0.9021 intercept 2.3026 1.5817 3.3521 CC 0.8340 TV 0.2183 1.2440 0.8622 1.7949 CC*TV 0.7371 0.4339 1.2520 -0.3050 Ε 0=================================0 | SuperMix used 0.08 seconds CPU | 0================================== 111 € . Save As... Close

Empirical Bayes Estimates of Random Effects Select "Analysis" > "View Level-2 Bayes Results"

403101.00	1	0.7275523	0.1409369	intercept	
403102.00	1	0.0344524	0.2319444	intercept	
404101.00	1	0.0689288	0.1625049	intercept	
404102.00	1	0.1093860	0.1762543	intercept	
404103.00	1	0.0034297	0.2087811	intercept	
193101.00	1	0.1430232	0.1010267	intercept	
194101.00	1	-0.0800558	0.1622734	intercept	
194102.00	1	0.3179628	0.1654354	intercept	
194103.00	1	-0.4486374	0.1484604	intercept	
194104.00	1	0.3228970	0.1530624	intercept	
194105.00	1	-0.1409860	0.1573158	intercept	
194106.00	1	0.4833708	0.1655199	intercept	
196101.00	1	0.3632567	0.1261172	intercept	
196102.00	1	0.4889583	0.1794476	intercept	
197101.00	1	0.0083327	0.1310989	intercept	
197102.00	1	-0.2188577	0.1269543	intercept	
197103.00	1	0.2870198	0.2429920	intercept	
197104.00	1	0.0790041	0.2185922	intercept	
198101.00	1	0.1688825	0.1196497	intercept	
198102.00	1	-0.4779542	0.1330960	intercept	
198103.00	1	-0.4114383	0.1375209	intercept	
199101.00	1	-0.1520310	0.1489538	intercept	
199102.00	1	-0.2259525	0.2437823	intercept	
199103.00	1	-0.0696985	0.1431212	intercept	
199104.00	1	-0.1520310	0.1489538	intercept	
199105.00	1	-0.1197606	0.2580259	intercept	
199106.00	1	-0.0863297	0.1539014	intercept	

Class ID, random effect number, estimate, variance, name

Under "File" click on "Open Existing Model Setup"

File] Edit Window Help	
	New Project	Ctrl+N
	Import Data File	Ctrl+I
	Close	
	New Model Setup	Ctrl+W
	Open Existing Model Setup	Ctrl+E
	New Syntax File	
	Open Syntax File	
	Open Text File	
	Data-based Graphs	•
	Open Graph	Ctrl+G
	Save	Ctrl+S
	Save As	
	Exit	

Open C:\SuperMixEn Examples\Workshop\Binary\tvbsc.mum

(or C:\SuperMixEn Student Examples\Workshop\Binary\tvbsc.mum)

🖌 🗛	A				
🔆 Favorites 👘	Name	Date modified	Туре	Size	
📃 Desktop	schizb1.mum	1/2/2015 9:34 AM	MUM File	3 KB	
🚺 Downloads	🔳 schizb2.mum	5/18/2007 12:13 AM	MUM File	4 KB	
🔛 Recent Places	TVBC.mum	1/2/2015 12:12 PM	MUM File	3 KB	
the An	TVBS.mum	5/18/2007 12:14 AM	MUM File	4 KB	
🧮 Libraries 👘 🗏	TVBSC.mum	5/18/2007 12:15 AM	MUM File	4 KB	
Pictures Videos					
Local Disk (C:)					
🖵 groups (\\phsfile _					

Note "Dependent Variable Type" should be "binary"

Model Setup: TVBSC.mu	ım			
Configuration	tarting Values <u>P</u> atterns	<u>A</u> dv	anced Linear Transforms	
Title 1: TVSFP binary outc	ome			
Title 2: Students in Classro	oms in Schools model			
Dependent Variable Type:	binary	-	Level-2 IDs:	Class
Dependent Variable:	THKSbin	-	Level-3 IDs:	School
Categories:	Value	_	Write Bayes Estimates:	no
	1 0 2 1		Convergence Criterion:	0.0001
			Number of Iterations:	100
Missing Values Present:	false		Perform Crosstab	oulation: no 💌
			Output Type:	standard
Select the form of	the dependent variable.	. The o	ptions on the screens will c	hange as required.

For the moment, unselect $\ensuremath{\texttt{PreTHKS}}$ as an explanatory variable

		Patterns Advanced Linear Trar	
Available	E 2 3	Explanatory Variables E	L-2 Random Effects 2
School		CC 🔽	
Class		TV 🔽	
THKSord		CC*TV	
THKSbin			
ntropt			
PreTHKS			
)C			
TV			
CC*TV			Include Intercept
			L-3 Random Effects 3
		🛛 🔽 Include Intercept	🔽 Include Intercept
			in molde mercept

Note "Optimization Method" should be "adaptive quadrature"

Model Setup: TVBSC.r	num				x
<u>C</u> onfiguration ∐ ⊻ariables	Starting Values Patt	erns <u>A</u> dvanced	Linear Transforms]	
General Settings Unit Weighting:	equal	•			
Optimization Method: Number of Quadrature	Points: 25				
Dependent (Binary) Vari Distribution Model: Estimate Scale:	able Settings Bernoulli none	•	Function Model:	logistic	3
		the optimization n ault is adaptive qu			

Provide TVBSC.out

tudents in Cl	utcome assrooms in										
Mode	l and Data	Descrip	ptions								
Sampling Dist	ribution			= Bern	oulli						
Link Function				= Logi	stic						
PROB (Success)	= 1.0/[1.0+	EXP (-E)	IA)]								
Number of Lev	el-3 Units			= 28							
Number of Lev	el-2 Units			= 135							
Number of Lev				= 1600	E)						
Number of Lev	el-2 Units	per Lev	vel-3 Uni	t =							
2 3	1 6	2	4 3	6							
	4 2	6	5 5	7	11	7	4	8			
7 4	7 13										
20 3	er i units	IOL	e first (level-3,	level	-2) unit	t com	binatio	on =		
							=0	binatio	on =		
20 3 o======= Descriptiv o=======	e statistic	s for a	all the v	ariables	in th	e model	=o =o dard	binatio	on =		
20 3 o======= Descriptiv o============ Variable	e statistic	s for a	all the v Maximu	ariables 	in th Mean	e model Stand Deviat	=o =o dard	binatio	on =		
20 3 o======= Descriptiv o======= Variable	e statistic Min	s for a	all the v Maximu	ariables m	in th Mean	e model Stand Deviat	=o =o dard tion	binatio	on =		
20 3 o======== Descriptiv o======= Variable THKSbin1	e statistic Min 0.	s for a imum 	all the v Maximu 1.000	m - 0 0	Mean .4706	e model Stand Deviat	=o =o dard tion 4993	binatio	on =		
20 3 o====================================	e statistic Min 0. 0.	s for a imum 0000 0000	All the v Maximu 1.000 1.000	m - 0 0 0 0	Mean .4706 .5294	e model Stand Deviat 0.4 0.4	=0 =0 dard tion 4993 4993	binatio	on =		
20 3 o====================================	e statistic 0. 0. 1.	s for a 0000 0000 0000	All the v Maximu 1.000 1.000 1.000	m - 0 0 0 1	in th Mean 	e model Stand Deviat 0.4 0.4	=0 =0 dard tion 4993 4993 0000	binatio	on =		
20 3 o====================================	e statistic Min 0. 0. 1. 0.	s for a imum 0000 0000 0000 0000	Maximu 1.000 1.000 1.000 1.000	m - 0 0 0 1 0 1	Mean .4706 .5294 .0000 .4769	e model Stand Deviat 0.4 0.4 0.4	=0 =0 dard tion 4993 4993 0000 4996	binatio	on =		
20 3 o====================================	e statistic 	s for a	Maximu 1.000 1.000 1.000 1.000 1.000	m - 0 0 0 1 0 0 0 0	Mean .4706 .5294 .0000 .4769 .4994	e model Deviat 0.4 0.4 0.4 0.4 0.4	=0 =0 dard tion 4993 4993 0000 4996 5002	binatio	on =		
20 3 o====================================	e statistic 	s for a	Maximu 1.000 1.000 1.000 1.000	m - 0 0 0 1 0 0 0 0	Mean .4706 .5294 .0000 .4769 .4994	e model Deviat 0.4 0.4 0.4 0.4 0.4	=0 =0 dard tion 4993 4993 0000 4996 5002	binatio	on =		

TVBSC.out

.

Ε

0=== =====0 L Ontimization Mathada Adaptive Guadr

Optimization	Method:	Adaptive	Quadrature	
0=========				-0

25
6
10
2133.70171
2145.70171
2177.96826

Estimated regression weights

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept	-0.3914	0.1918	-2.0407	0.0413
CC	0.9794	0.2788	3.5128	0.0004
TV	0.3230	0.2700	1.1967	0.2314
CC+TV	-0.5013	0.3901	-1.2851	0.1987

Ē

Odds Ratio and 95% Odds Ratio Confidence Intervals

			Boun	lds
Parameter	Estimate	Odds Ratio	Lower	Upper
intercept	-0.3914	0.6761	0.4643	0.9846
CC	0.9794	2.6628	1.5418	4.5989
TV	0.3230	1.3813	0.8138	2.3447
CC*TV	-0.5013	0.6057	0.2820	1.3011

Estimated level 2 variances and covariances

Parameter	Estimate	Error	z Value	P Value	
intercept/intercept	0.1687	0.0805	2.0963	0.0361	
1		III			•
Save As Close					

Estimated le	vel 3 variances	and covari	ances			
Parameter	Estimate	Stands Error	z Va	alue I		
intercept/intercept	0.1209	0.07	771 1.1		0.1169	
evel 3 covariance matrix						
intercept						
ntercept 0.120890						
evel 3 correlation matrix						
intercept						
ntercept 1.000000						
Populat	ion Average Est	imates				
		Standard				
Parameter Esti			z Value			
-	3667		-2.0399	0.04		
	9180		3.5116	0.00		
	3027 4701		1.1973 -1.2857	0.23		
Odds Ratio and 95% Odds	Ratio Confiden	ce Interval	La			
			Bour	nds		
		ds Ratio	Lower	Upp		
	3667	0.6930	0.4872	0.98		
	9180	2.5043	1.5002	4.18		
	3027	1.3535	0.8246	2.22		
CC*TV -0.	4701	0.6249	0.3052	1.27	96	
c===============================	0					
SuperMix used 3.45 secon	ds CPU					

Empirical Bayes Estimates of Random Class Effects Select "Analysis" > "View Level-2 Bayes Results"

403.00	403101.00	1	0.4140825	0.1196861	intercept	
403.00	403102.00	1	-0.0138060	0.1537718	intercept	
404.00	404101.00	1	0.0320752	0.1256837	intercept	
404.00	404102.00	1	0.0623109	0.1308931	intercept	
404.00	404103.00	1	-0.0076571	0.1435780	intercept	
193.00	193101.00	1	0.0876924	0.1053751	intercept	
194.00	194101.00	1	-0.0868046	0.1223228	intercept	
194.00	194102.00	1	0.2031341	0.1242055	intercept	
194.00	194103.00	1	-0.3690000	0.1150080	intercept	
194.00	194104.00	1	0.2078250	0.1188163	intercept	
194.00	194105.00	1	-0.1337117	0.1200018	intercept	
194.00	194106.00	1	0.3230023	0.1241661	intercept	
196.00	196101.00	1	0.1308682	0.1137998	intercept	
196.00	196102.00	1	0.2581431	0.1336295	intercept	
197.00	197101.00	1	-0.0040352	0.1119884	intercept	
197.00	197102.00	1	-0.1806288	0.1099575	intercept	
197.00	197103.00	1	0.1826475	0.1565903	intercept	
197.00	197104.00	1	0.0492875	0.1469742	intercept	
198.00	198101.00	1	0.2265312	0.1055450	intercept	
198.00	198102.00	1	-0.2836035	0.1120466	intercept	
198.00	198103.00	1	-0.2334184	0.1138528	intercept	
199.00	199101.00	1	-0.0601714	0.1181782	intercept	
199.00	199102.00	1	-0.1337333	0.1568976	intercept	
199.00	199103.00	1	0.0036399	0.1157150	intercept	
199.00	199104.00	1	-0.0601714	0.1181782	intercept	
199.00	199105.00	1	-0.0693896	0.1624270	intercept	
199.00	199106.00	1	-0.0132031	0.1202872	intercept	

School ID, Class ID, random effect number, estimate, variance, name

Empirical Bayes Estimates of Random School Effects Select "Analysis" > "View Level-3 Bayes Results"

403.00	1	0.2869095	0.0912322	intercept
404.00	1	0.0621644	0.0800387	intercept
193.00	1	0.0628534	0.0883777	intercept
194.00	1	0.1035370	0.0514053	intercept
196.00	1	0.2788348	0.0828379	intercept
197.00	1	0.0338824	0.0694394	intercept
198.00	1	-0.2082206	0.0643113	intercept
199.00	1	-0.2387087	0.0588660	intercept
401.00	1	0.2933296	0.0770402	intercept
402.00	1	-0.0194551	0.0773640	intercept
405.00	1	-0.0126517	0.0643529	intercept
407.00	1	0.2971076	0.0612066	intercept
408.00	1	-0.1337075	0.0789259	intercept
409.00	1	0.1783368	0.0532141	intercept
410.00	1	-0.4240002	0.0709826	intercept
411.00	1	0.3365628	0.0887505	intercept
412.00	1	-0.0279489	0.0694564	intercept
414.00	1	-0.1228827	0.0676033	intercept
415.00	1	0.3624831	0.0574220	intercept
505.00	1	-0.1754494	0.0492031	intercept
506.00	1	-0.5082910	0.0505349	intercept
507.00	1	-0.2349807	0.0505248	intercept
508.00	1	0.3608973	0.0531524	intercept
509.00	1	-0.2026640	0.0407207	intercept
510.00	1	-0.0783592	0.0419983	intercept
513.00	1	-0.3368798	0.0751064	intercept
514.00	1	0.0896937	0.0450339	intercept
515.00	1	-0.0223928	0.0332637	intercept

School ID, random effect number, estimate, variance, name

		Mult	ilevel
	Fixed	2-level	3-level
intercept	341 ***	384 ***	391 ***
	(.099)	(.140)	(.192)
CC	.880 ***	.887 ***	.979 **
	(.145)	(.203)	(.278)
ΤV	.273 **	.232	.323
	(.139)	(.199)	(.270)
$CC \times TV$	394 *	324	501
	(.204)	(.287)	(.390)
class var		.275	.170
		(.087)	(.081)
school var			.120
			(.077)
-2 log L	2162.53	2138.15	2133.70
*** $p < .01$ ** p	$< .05 \ ^*p < .10$	Wald tests not o	done for vars)

THKS Post-Int (dichotomized) Scores - LR Estimates (std errs)

Calculation of ICC - 2 level model

$$r = \frac{\sigma_v^2}{\sigma_v^2 + \sigma^2}$$

Random classrooms model $(\pi^2/3 = 3.2897)$

$$r = \frac{.275}{.275 + \pi^2/3} = .077$$

 $\Rightarrow 7.7\%$ of the unexplained variation is at the classroom level

Calculation of ICC - 3 level model

Level-3 (likeness of students in the same school)

$$r = \frac{\sigma_{\upsilon(3)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2 + \sigma^2} = \frac{.121}{.121 + .169 + \pi^2/3} = .034$$

Level-2 (likeness of students in same classroom & school)

$$r = \frac{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2 + \sigma^2} = \frac{.121 + .169}{.121 + .169 + \pi^2/3} = .081$$

Level-2 (likeness of classes in the same school)

$$r = \frac{\sigma_{v(3)}^2}{\sigma_{v(3)}^2 + \sigma_{v(2)}^2} = \frac{.121}{.121 + .169} = .415$$

r < .5 : the school level contributes slightly less to variability than the class level
average classroom post THKS scores are moderately similar within schools

CC	ΤV	logistic $\Psi(z) = [1 + \exp(-z)]^{-1}$	estimate
Fixed	l-eff	ects model	
0	0	$\Psi(341)$.416
0	1	$\Psi(341 + .273)$.483
1	0	$\Psi(341 + .880)$.632
1	1	$\Psi(341 + .273 + .880394)$.603

Random-classrooms model
$$\hat{d} = (.2745 + \pi^2/3)/(\pi^2/3)$$

 $0 \quad 0 \qquad \Psi((-.384)/\sqrt{\hat{d}})$.409

$$0 \quad 1 \qquad \qquad \Psi((-.384 + .232)/\sqrt{\hat{d}}) \qquad .464$$

1 0
$$\Psi((-.384 + .887)/\sqrt{\hat{d}})$$
 .619

1 1
$$\Psi((-.384 + .232 + .887 - .324)/\sqrt{d})$$
 .597

Random-classrooms model using Population Average Estimates

1 0
$$\Psi(-.361 + .834)$$
 .616

1 1
$$\Psi(-.361 + .218 + .834 - .305)$$
 .595

 $d = \text{design effect} = (\sigma_v^2 + \sigma^2)/\sigma^2$

CC ′	ΓV	logistic $\Psi(z) = [1 + \exp(-z)]^{-1}$	estimate
3-lev	el model	$\hat{d} = (.121 + .169 + \pi^2/3)/(\pi^2/3)$	3)
0	0	$\Psi((391)/\sqrt{\hat{d}})$.407
0	1	$\Psi((391+.323)/\sqrt{\hat{d}})$.484
1	0	$\Psi((391+.979)/\sqrt{\hat{d}})$.638
1	1 Ψ(($(391 + .323 + .979501)/\sqrt{\hat{d}})$.597

3-level model using Population Average Estimates

0	0	$\Psi(367)$.409
0	1	$\Psi(367+.303)$.484
1	0	$\Psi(367 + .918)$.634
1	1	$\Psi(367 + .303 + .918470)$.595

$$d = \text{design effect} = (\sigma_{v(3)}^2 + \sigma_{v(2)}^2 + \sigma^2)/\sigma^2$$

Within-Clusters / Between-Clusters components

<u>Within-clusters model</u> - level 1 $(j = 1, ..., n_i \text{ subjects})$

$$logit_{ij} = b_{0i} + b_{1i}PRETHKS_{ij}$$

<u>Between-clusters model</u> - level 2 (i = 1, ..., N clusters)

 $b_{0i} = \beta_0 + \beta_2 C C_i + \beta_3 T V_i + \beta_4 (C C_i \times T V_i) + \upsilon_{0i}$ $b_{1i} = \beta_1$

 $v_{0i} \sim \mathcal{NID}(0, \sigma_v^2)$

- $\beta_0 = (\text{PRETHKS adjusted})$ logit for CC=no TV=no subgroup
- β_1 = effect of PRETHKS on POSTTHKS
- $\beta_2 = (PRETHKS adjusted) logit diff. between CC=yes vs CC=no (for TV=no)$
- $\beta_3 = (PRETHKS adjusted) logit diff. between TV=yes vs TV=no (for CC=no)$
- $\beta_4 = (\text{PRETHKS adjusted})$ difference in logit attributable to interaction
- v_{0i} = random cluster deviation

3-level model

 $\frac{Within-classrooms (and schools) model}{(k = 1, \dots, n_{ij} \text{ students})} - level 1$

$$logit_{ijk} = b_{0ij} + b_{1ij}PRETHKS_{ijk}$$

 $\frac{Between-classrooms (within-schools) model}{(j=1,\ldots,n_i \text{ classrooms})} - level 2$

$$b_{0ij} = b_{0i} + v_{0ij}$$

 $b_{1ij} = b_{1i}$

<u>Between-schools model</u> - level 3 (i = 1, ..., N schools)

 $b_{0i} = \beta_0 + \beta_2 C C_i + \beta_3 T V_i + \beta_4 (C C_i \times T V_i) + \upsilon_{0i}$ $b_{1i} = \beta_1$

$$v_{0ij} \sim \mathcal{NID}(0, \sigma_{v(2)}^2)$$
 and $v_{0i} \sim \mathcal{NID}(0, \sigma_{v(3)}^2)$

Reopening TVBC.mum and selecting PreTHKS as an explanatory variable

Available	E 2	Explanatory Variables	E	L-2 Random Effects 2
School		CC	V	
Class	ГГ	TV	\checkmark	
「HKSord	ГГ	CC*TV	V	
THKSbin	ГГ	PreTHKS	V	
ntropt	ГГ			
PreTHKS				
CC				
ΓV				
CC*TV				Include Intercept
]

TVBC.out

- 0 **X**

.

E

÷

Number of quadrature points =	25
Number of free parameters =	6
Number of iterations used =	4
-21nL (deviance statistic) =	2057.17849
Akaike Information Criterion	2069.17849
Schwarz Criterion	2101.44504

Estimated regression weights

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept	-1.2534	0.1695	-7.3936	0.0000
CC	0.9883	0.1973	5.0094	0.0000
TV	0.2870	0.1920	1.4949	0.1349
CC*TV	-0.3691	0.2774	-1.3306	0.1833
PreTHKS	0.4010	0.0461	8.6971	0.0000

Odds Ratio and 95% Odds Ratio Confidence Intervals

			Boun	ds
Parameter	Estimate	Odds Ratio	Lower	Upper
intercept	-1.2534	0.2855	0.2048	0.3981
CC	0.9883	2.6865	1.8250	3.9548
TV	0.2870	1.3325	0.9146	1.9412
CC+TV	-0.3691	0.6914	0.4014	1.1908
PreTHKS	0.4010	1.4933	1.3643	1.6345

Estimated level 2 variances and covariances

-	_	Standard		
Parameter	Estimate	Error	z Value	P Value
				2-01-01-01-01-01-01-01-01-01-01-01-01-01-
intercept/intercept	0,2192	0.0803	2,7308	0.0063

Save As... Close

51

TVBC.out

```
Calculation of the intracluster correlation

residual variance = pi*pi / 3 (assumed)

cluster variance = 0.2192
```

intracluster correlation = 0.2192 / (0.2192 + (pi*pi/3)) = 0.062

Population Average Estimates

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept	-1.1953	0.1621	-7.3754	0.0000
CC	0.9421	0.1885	4.9981	0.0000
TV	0.2736	0.1833	1.4928	0.1355
CC+TV	-0.3518	0.2649	-1.3283	0.1841
PreTHKS	0.3825	0.0444	8.6121	0.0000

×.

н

÷

þ.

Odds Ratio and 95% Odds Ratio Confidence Intervals

			Bounds	
Parameter	Estimate	Odds Ratio	Lower	Upper
intercept	-1.1953	0.3026	0.2203	0.4158
CC	0.9421	2.5654	1.7730	3.7119
TV	0.2736	1.3147	0.9179	1.8829
CC+TV	-0.3518	0.7034	0.4185	1.1821
PreTHKS	0.3825	1,4660	1.3438	1.5994

| SuperMix used 0.09 seconds CPU |

0=========================0

Save As... Close

4

111

Reopening TVBSC.mum and selecting PreTHKS as an explanatory variable

Available	E 2 3	Explanatory Variables	E	L-2 Random Effects 2
School	ГГГ	CC		
Class		TV		
「HKSord		CC*TV		
THKSbin		PreTHKS	V	
ntropt				
PreTHKS	FFF			
CC				
ΓV				
CC*TV				Include Intercept
				L-3 Random Effects 3
				✓ Include Intercept

TVBSC.out

.

E

Ŧ

0-----0

| Optimization Method: Adaptive Quadrature |

Number of quadrature points =	25
Number of free parameters =	7
Number of iterations used =	11
-21nL (deviance statistic) =	2055.70206
Akaike Information Criterion	2069.70206
Schwarz Criterion	2107.34637

Estimated regression weights

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept	-1.2465	0.1957	-6.3687	0.0000
CC	1.0383	0.2448	4.2416	0.0000
TV	0.3325	0.2358	1.4104	0.1584
CC+TV	-0.4644	0.3427	-1.3552	0.1754
PreTHKS	0.3954	0.0463	8.5332	0.0000

Odds Ratio and 95% Odds Ratio Confidence Intervals

			Bour	lds
Parameter	Estimate	Odds Ratio	Lower	Upper
intercept	-1.2465	0.2875	0.1959	0.4220
CC	1.0383	2.8245	1.7481	4.5636
TV	0.3325	1.3945	0.8785	2.2137
CC*TV	-0.4644	0.6285	0.3211	1.2303
PreTHKS	0.3954	1.4849	1.3560	1.6261

Estimated level 2 variances and covariances

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept/intercept	0.1649	0.0813	2.0277	0.0426

Save As...

<u>C</u>lose

E	Sstimated level	3 variances	and covar	iances			
Parameter		Estimate	Stand	2		P Value	
intercept/interc	rept	0.0630	0.0		1.0213	0.3071	
evel 3 covariand	ce matrix						
	intercept						
ntercept	0.062954						
evel 3 correlati	ion matrix						
	intercept						
ntercept	1.000000						
	Population .	Average Estin	mates				
		S	tandard				
Parameter	Estimate	S	tandard rror				
	Estimate	S E	tandard rror				
intercept	Estimate 	S E	tandard rror 0.1869	-6.3478	в о.	0000	
intercept CC	Estimate -1.1866 0.9881	S E -	tandard rror 0.1869 0.2330	-6.3478 4.2416	B 0. 6 0.	0000	
intercept CC TV	Estimate -1.1866 0.9881 0.3164	S E -	tandard rror 0.1869 0.2330 0.2243	-6.3478 4.2416 1.4106	B 0. 6 0. 6 0.	0000 0000 1584	
intercept CC	Estimate -1.1866 0.9881	S E. -	tandard rror 0.1869 0.2330	-6.3478 4.2416 1.4106 -1.3551	B 0. 6 0. 6 0. 1 0.	0000 0000 1584 1754	
intercept CC TV CC*TV PreTHKS	Estimate -1.1866 0.9881 0.3164 -0.4420	S E. -	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446	-6.3478 4.2410 1.4100 -1.3551 8.4335	B 0. 6 0. 6 0. 1 0.	0000 0000 1584 1754	
intercept CC TV CC*TV PreTHKS	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766	S E. -	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446	-6.3478 4.2410 1.4100 -1.3551 8.4335	 6 0. 6 0. 1 0. 5 0.	0000 0000 1584 1754	
intercept CC TV CC*TV PreTHKS Odds Ratio a	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766 and 95% Odds Rat	S E - io Confidence	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446 e Interva	 -6.3478 4.2410 1.4100 -1.3551 8.4335 Is	 8 0. 6 0. 1 0. 5 0. Bounds	0000 0000 1584 1754 0000	
intercept CC TV CC*TV PreTHKS Odds Ratio a Parameter	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766 and 95% Odds Rat Estimate	S E - io Confidence Odd	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446 e Interva s Ratio	 -6.3478 4.2410 1.4100 -1.3551 8.4335 Lower	 3 0. 5 0. 1 0. 5 0. Bounds r T	0000 0000 1584 1754 0000	
intercept CC TV CC*TV PreTHKS Odds Ratio a Parameter	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766 and 95% Odds Rat Estimate 	S E - io Confidenc Odd 	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446 e Interva s Ratio	-6.3478 4.2410 1.4100 -1.3551 8.4335 Ls	 3 0. 5 0. 1 0. 5 0. Bounds c 1	0000 0000 1584 1754 0000	
intercept CC TV CC*TV PreTHKS Odds Ratio a Parameter intercept	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766 and 95% Odds Rat Estimate -1.1866	S E - io Confidence Odd 	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446 e Interva s Ratio 0.3053	 -6.3478 4.2410 1.4100 -1.3551 8.4335 Lower 0.2116	 3 0. 5 0. 1 0. 5 0. Bounds c 1 6 0.	0000 0000 1584 1754 0000	
intercept CC TV CC*TV PreTHKS Odds Ratio a Parameter intercept CC	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766 and 95% Odds Rat Estimate -1.1866 0.9881	S E - io Confidenc Odd 	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446 e Interva s Ratio 0.3053 2.6861	 -6.3478 4.2410 1.4100 -1.3551 8.4335 Ls Lower 0.2110 1.7015	 3 0. 5 0. 1 0. 5 0. 8 0. 5 1. 6 0. 5 4.	0000 0000 1584 1754 0000 Jpper 4403 2405	
intercept CC TV CC*TV PreTHKS Odds Ratio a Parameter intercept	Estimate -1.1866 0.9881 0.3164 -0.4420 0.3766 and 95% Odds Rat Estimate -1.1866	S E - io Confidence Odd 	tandard rror 0.1869 0.2330 0.2243 0.3262 0.0446 e Interva s Ratio 0.3053	 -6.3478 4.2416 1.4106 -1.3551 8.4335 ls Lower 0.2116 1.7015 0.8841		0000 0000 1584 1754 0000	

<u>Save As... Close</u>

		Multilevel		
	Fixed	2-level	3-level	
intercept	-1.217 ***	-1.253 ***	-1.246 ***	
	(.141)	(.170)	(.196)	
PRETHKS	.400 ***	.401 ***	.395 ***	
	(.044)	(.046)	(.046)	
CC	.973 ***	.988 ***	1.038 ***	
	(.150)	(.197)	(.245)	
TV	.316 **	.287	.333	
	(.143)	(.192)	(.236)	
$CC \times TV$	413 **	369	464	
	(.210)	(.277)	(.343)	
class var		.219	.165	
		(.080)	(.081)	
school var			.063	
			(.062)	
-2 log L	2073.3	2057.18	2055.70	
*** $p < .01$ ** $p < .05$ * $p < .10$ (Wald-tests not done for vars)				

THKS Post-Int (dichotomized) Scores - LR Estimates (std err)

Calculation of ICC - 2 level models

$$r = \frac{\sigma_{\upsilon}^2}{\sigma_{\upsilon}^2 + \sigma^2}$$

Random classrooms model

$$r = \frac{.219}{.219 + \pi^2/3} = .062$$

 $\Rightarrow 6.2\%$ of the unexplained variation is at the classroom level

Calculation of ICC - 3 level model

Level-3 (likeness of students in the same school) $r = \frac{\sigma_{v(3)}^2}{\sigma_{v(3)}^2 + \sigma_{v(2)}^2 + \sigma^2} = \frac{.063}{.063 + .165 + \pi^2/3} = .018$

Level-2 (likeness of students in same classroom & school)

$$r = \frac{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2 + \sigma^2} = \frac{.063 + .165}{.063 + .165 + \pi^2/3} = .063$$

Level-2 (likeness of classes in the same school)

$$r = \frac{\sigma_{\upsilon(3)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2} = \frac{.063}{.063 + .165} = .276$$

r < .5 : the school level contributes less to variability than the class level
average classroom post THKS scores are moderately similar within schools

CC	ΤV	logistic $\Psi(z) = [1 + \exp(-z)]^{-1}$	estimate
Fixed	l-effe	ects model	
0	0	$\Psi(-1.217 + 2.152 \times .400)$.412
0	1	$\Psi(-1.217 + .316 + 2.087 \times .400)$.483
1	0	$\Psi(-1.217 + .973 + 2.050 \times .400)$.640
1	1	$\Psi(-1.217 + .316 + .973413 + 1.979 \times .400)$.610

Random-classrooms model $\hat{d} = (.219 + \pi^2/3)/(\pi^2/3)$ $\Psi((-1.253 + 2.152 \times .401)/\sqrt{\hat{d}})$ 0 0 .407 $\Psi((-1.253 + .287 + 2.087 \times .401)/\sqrt{\hat{d}})$.469 0 1 $\Psi((-1.253 + .988 + 2.050 \times .401)/\sqrt{\hat{d}})$ 1 0 .632 1 $\Psi((-1.253 + .287 + .988 - .369 + 1.979 \times .401)/\sqrt{\hat{d}})$ 1 .606

Random-classrooms model using Population Average Estimates

- $\begin{array}{cccc} 0 & 0 & \Psi(-1.195 + 2.152 \times .383) & .408 \\ 0 & 1 & \Psi(-1.195 + .287 + 2.087 \times .383) & .469 \end{array}$
- 1 0 $\Psi(-1.195 + .988 + 2.050 \times .383)$.630
- 1 1 $\Psi(-1.195 + .287 + .988 .369 + 1.979 \times .383)$.605

 $d = \text{design effect} = (\sigma_v^2 + \sigma^2)/\sigma^2$

CC ′	TV	logistic $\Psi(z) = [1 + \exp(-z)]^{-1}$	estimate
3-lev	el m	<i>odel</i> $\hat{d} = (.063 + .165 + \pi^2/3)/(\pi^2/3)$	
0	0	$\Psi((-1.246 + 2.152 \times .395)/\sqrt{\hat{d}})$.405
0	1	$\Psi((-1.246 + .333 + 2.087 \times .395)/\sqrt{\hat{d}})$.479
1	0	$\Psi((-1.246 + 1.038 + 2.050 \times .395)/\sqrt{\hat{d}})$.642
1	1	$\Psi((-1.246 + .333 + 1.038464 + 1.979 \times .395)/\sqrt{\hat{d}})$.605

3-level model using Population Average Estimates

- $\begin{array}{ccccccc} 0 & 0 & \Psi(-1.187 + 2.152 \times .377) & .407 \\ 0 & 1 & \Psi(-1.187 + .316 + 2.087 \times .377) & .479 \end{array}$
- 1 0 $\Psi(-1.187 + .988 + 2.050 \times .377)$.640
- 1 1 $\Psi(-1.187 + .316 + .988 .442 + 1.979 \times .377)$.604

$$d = \text{design effect} = (\sigma_{v(3)}^2 + \sigma_{v(2)}^2 + \sigma^2)/\sigma^2$$

Summary

- Mixed logistic regression model is direct extension of ordinary logistic regression
- Useful approach for multilevel data
- Software is available in Supermix (and other programs)
- (Extended) methods are available for ordinal, nominal, count outcomes
- Similar models can be used for longitudinal, albeit more issues
 - more random effects are typically necessary
 - missing data and attrition