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Multilevel models for categorical outcomes

• dichotomous outcomes

– mixed-effects logistic regression

• ordinal outcomes

– mixed-effects ordinal logistic regression

∗ proportional odds model

∗ partial or non-proportional odds model

• discrete or grouped time-to-event data

– mixed-effects dichotomous or ordinal regression

– replace logistic link with complementary log-log link to
yield proportional (and non-proportional) hazards models
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Logistic Regression Model

log


P (Yi = 1)

1− P (Yi = 1)

 = x′iβ

• Dichotomous outcome (Y = 0 absence, Y = 1 presence).

• Function that links probabilities to regressors is the logit (or
log odds) function log [P/(1− P ]. Logit is called the link
function.

The model can be written in terms of probabilities:

P (Yi = 1) =
1

1 + exp(−x′iβ)

•Model is a linear model for the logits, not for the probabilities.
Logits can take on any values between negative and positive
infinity, probabilities can only take on values between 0 and 1.
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The model can also be written in terms of the odds:

P (Yi = 1)

1− P (Yi = 1)
= exp(x′iβ)

exp β = change in odds for Y per unit change of x

• β = 0 yields no effect on the odds

• β > 0 increases odds Y is present with increasing x

• β < 0 decreases odds Y is present with increasing x
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Dichotomous Response and Threshold Concept
Continuous yi - an unobservable latent variable - related to
dichotomous response Yi via “threshold concept”

Response occurs (Yi = 1) if γ < yi
otherwise, a response does not occur (Yi = 0)
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The Threshold Concept in Practice
“How was your day?” (what is your satisfaction level today?)

• Satisfaction may be continuous, but we usually emit a
dichotomous response:
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Model for Latent Continuous Responses
Consider the model with p covariates for the latent response
strength yi (i = 1, 2, . . . , N):

yi = x′iβ + εi

• probit: εi ∼ standard normal (mean=0, variance=1)

• logistic: εi ∼ standard logistic (mean=0, variance=π2/3)

⇒ β estimates from logistic regression are larger (in abs. value)
than from probit regression by approximately

√
π2/3 = 1.8

Underlying latent variable

• useful way of thinking of the problem

• not an essential assumption of the model
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Random-intercept Logistic Regression Model

Consider the model with p covariates for the response Yij for
subject j (j = 1, 2, . . . , ni) in cluster i (i = 1, 2, . . . , N):

log


P (Yij = 1 | υ0i)

1− P (Yij = 1 | υ0i)

 = x′ijβ + υ0i

where

Yij = dichotomous response for subject j in cluster i

xij = (p + 1)× 1 covariate vector (includes 1 for intercept)

β = (p + 1)× 1 vector of unknown parameters

υ0i = cluster effects distributed NID(0, σ2
υ)
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Characteristics of υ0i ∼ NID(0, σ2
υ)

• separates model from ususal (fixed-effects) multiple logistic
regression model

• takes on i = 1, 2, . . . , N values

• assess impact of cluster i on individual outcome logitij,
represents effect of subject clustering

• common for each cluster member, but changes for each cluster

• if υ0i = 0, then cluster has no effect for cluster i

• if υ0i = 0 for all clusters, cluster structure has no impact on
individual data (σ2

υ = 0)

– no need for multilevel approach

– ordinary logistic regression is OK

• if subject clustering has strong effect, estimates of υ0i 6= 0 and
σ2
υ will increase from 0
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Model for Latent Continuous Responses

Consider the model with p covariates for the ni × 1 latent
response strength yij:

yij = x′ijβ + υ0i + εij

where assuming

• εij ∼ standard normal (mean 0 and σ2 = 1) leads to
multilevel probit regression

• εij ∼ standard logistic (mean 0 and σ2 = π2/3) leads to
multilevel logistic regression
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Underlying latent variable

• not an essential assumption of the model

• useful for obtaining intra-class correlation (r)

r =
σ2
υ

σ2
υ + σ2

and for design effect (d)

d =
σ2
υ + σ2

σ2 = 1/(1− r)

ratio of actual variance to the variance that would be obtained
by simple random sampling (holding sample size constant)
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Scaling of regression coefficients

Fixed-effects model
β estimates from logistic regression are larger (in abs. value)
than from probit regression by approximately√√√√√√√√π

2/3

1
= 1.8

because

• V (y) = σ2 = π2/3 for logistic

• V (y) = σ2 = 1 for probit
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Mixed-effects model
β estimates from mixed-effects model are larger (in abs. value)
than from fixed-effects model by approximately

√
d =

√√√√√√√√σ
2
υ + σ2

σ2

because

• V (y) = σ2
υ + σ2 in mixed-effects model

• V (y) = σ2 in fixed-effects model

difference depends on size of random-effects variance σ2
υ
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Within-Clusters / Between-Clusters models

Within-clusters model - level 1 (j = 1, . . . , ni)

observed response

log


P (Yij = 1 | υ0i)

1− P (Yij = 1 | υ0i)

 = b0i + b1i Sexij

latent response

yij = b0i + b1i Sexij + εij

Between-clusters model - level 2 (i = 1, . . . , N)

b0i = β0 + β2Grpi + υ0i

b1i = β1 + β3Grpi

υ0i ∼ NID(0, σ2
υ) and εij ∼ LID(0, π2/3)
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Effects of a School-based Intervention
The Television School and Family Smoking Prevention and
Cessation Project (Flay, et al., 1988); a subsample:

• sample - 1600 7th-graders - 135 classes - 28 schools

– 1 to 13 classes per school, 2 to 28 students per class

• outcome - knowledge of the effects of tobacco use

• timing - students tested at pre and post-intervention

• design - schools exposed to

– a social-resistance classroom curriculum (CC)

– a media (television) intervention (TV)

– CC combined with TV

– a no-treatment control group
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Main question of interest:

• Influence of the intervention on the tobacco health knowledge
scores (THKS) ?

Challenges in the analysis:

• outcome variable (THKS) is number correct of 7 items

• controlling for intra-school and intra-class variability

• potential explanatory variables are at different levels
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Tobacco and Health Knowledge Scale
Post-Intervention Scores ≥ 3 (out of 7)

Subgroup Descriptive Statistics

CC = no CC = yes
TV=no TV=yes TV=no TV=yes

n 421 416 380 383

proportions .416 .483 .632 .603

odds .711 .935 1.714 1.520

logits -.341 -.067 .539 .419
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Within-Clusters / Between-Clusters components

Within-clusters model - level 1 (j = 1, . . . , ni subjects)

logitij = b0i

Between-clusters model - level 2 (i = 1, . . . , N clusters)

b0i = β0 + β1CCi + β2TVi + β3(CCi × TVi) + υ0i

υ0i ∼ NID(0, σ2
υ)
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β0 = THKS logit for CC=no TV=no subgroup

β1 = logit diff. between CC=yes vs CC=no (for TV=no)

b0i = β0 + (β1 + β3TVi)CCi + β2TVi + υ0i

β2 = logit diff. between TV=yes vs TV=no (for CC=no)

b0i = β0 + (β2 + β3CCi)TVi + β1CCi + υ0i

β3 = difference in logit attributable to interaction

υ0i = random cluster deviation

note: interpretation depends on coding of variables, and βs are
adjusted for the cluster effects (cluster-specific effects)
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3-level model

Within-classrooms (and schools) model - level 1
(k = 1, . . . , nij students)

logitijk = b0ij

Between-classrooms (within-schools) model - level 2
(j = 1, . . . , ni classrooms)

b0ij = b0i + υ0ij

Between-schools model - level 3 (i = 1, . . . , N schools)

b0i = β0 + β1CCi + β2TVi + β3(CCi × TVi) + υ0i

υ0ij ∼ NID(0, σ2
υ(2)) and υ0i ∼ NID(0, σ2

υ(3))
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β0 = THKS logit for CC=no TV=no subgroup

β1 = logit diff. between CC=yes vs CC=no (for TV=no)

β2 = logit diff. between TV=yes vs TV=no (for CC=no)

β3 = difference in logit attributable to interaction

υ0ij = random classroom deviation

υ0i = random school deviation
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• Under SSI, Inc > “SuperMix (English)” or “SuperMix (English) Student”

• Under “File” click on “Open Spreadsheet”

• Open C:\SuperMixEn Examples\Workshop\Binary\tvsfpors.ss3
(or C:\SuperMixEn Student Examples\Workshop\Binary\tvsfpors.ss3)
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C:\SuperMixEn Examples\Workshop\Binary\tvsfpors.ss3
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Under “File” click on “Open Existing Model Setup”

Open C:\SuperMixEn Examples\Workshop\Binary\tvbc.mum
(or C:\SuperMixEn Student Examples\Workshop\Binary\tvbc.mum)
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Note “Dependent Variable Type” should be “binary”
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For the moment, unselect PreTHKS as an explanatory variable
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Note “Optimization Method” should be “adaptive quadrature”
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Empirical Bayes Estimates of Random Effects
Select “Analysis” > “View Level-2 Bayes Results”

Class ID, random effect number, estimate, variance, name
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Under “File” click on “Open Existing Model Setup”

Open C:\SuperMixEn Examples\Workshop\Binary\tvbsc.mum
(or C:\SuperMixEn Student Examples\Workshop\Binary\tvbsc.mum)
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Note “Dependent Variable Type” should be “binary”
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For the moment, unselect PreTHKS as an explanatory variable
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Note “Optimization Method” should be “adaptive quadrature”
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Empirical Bayes Estimates of Random Class Effects
Select “Analysis” > “View Level-2 Bayes Results”

School ID, Class ID, random effect number, estimate, variance,
name
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Empirical Bayes Estimates of Random School Effects
Select “Analysis” > “View Level-3 Bayes Results”

School ID, random effect number, estimate, variance, name
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THKS Post-Int (dichotomized) Scores - LR Estimates (std errs)
Multilevel

Fixed 2-level 3-level
intercept -.341 ∗∗∗ -.384 ∗∗∗ -.391 ∗∗∗

(.099) (.140) (.192)
CC .880 ∗∗∗ .887 ∗∗∗ .979 ∗∗

(.145) (.203) (.278)
TV .273 ∗∗ .232 .323

(.139) (.199) (.270)
CC× TV -.394 ∗ -.324 -.501

(.204) (.287) (.390)
class var .275 .170

(.087) (.081)
school var .120

(.077)

-2 log L 2162.53 2138.15 2133.70
∗∗∗p < .01 ∗∗p < .05 ∗p < .10 (Wald tests not done for vars)
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Calculation of ICC - 2 level model

r =
σ2
υ

σ2
υ + σ2

Random classrooms model (π2/3 = 3.2897)

r =
.275

.275 + π2/3
= .077

⇒ 7.7% of the unexplained variation is at the classroom level
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Calculation of ICC - 3 level model

Level-3 (likeness of students in the same school)

r =
σ2
υ(3)

σ2
υ(3) + σ2

υ(2) + σ2 =
.121

.121 + .169 + π2/3
= .034

Level-2 (likeness of students in same classroom & school)

r =
σ2
υ(3) + σ2

υ(2)

σ2
υ(3) + σ2

υ(2) + σ2 =
.121 + .169

.121 + .169 + π2/3
= .081

Level-2 (likeness of classes in the same school)

r =
σ2
υ(3)

σ2
υ(3) + σ2

υ(2)
=

.121

.121 + .169
= .415

• r < .5 : the school level contributes slightly less to variability than the class level

• average classroom post THKS scores are moderately similar within schools
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CC TV logistic Ψ(z) = [1 + exp(−z)]−1 estimate

Fixed-effects model

0 0 Ψ(−.341) .416

0 1 Ψ(−.341 + .273) .483

1 0 Ψ(−.341 + .880) .632

1 1 Ψ(−.341 + .273 + .880− .394) .603

Random-classrooms model d̂ = (.2745 + π2/3)/(π2/3)

0 0 Ψ((−.384)/
√
d̂) .409

0 1 Ψ((−.384 + .232)/
√
d̂) .464

1 0 Ψ((−.384 + .887)/
√
d̂) .619

1 1 Ψ((−.384 + .232 + .887− .324)/
√
d̂) .597

Random-classrooms model using Population Average Estimates

0 0 Ψ(−.361) .411

0 1 Ψ(−.361 + .218) .464

1 0 Ψ(−.361 + .834) .616

1 1 Ψ(−.361 + .218 + .834− .305) .595

d = design effect = (σ2υ + σ2)/σ2
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CC TV logistic Ψ(z) = [1 + exp(−z)]−1 estimate

3-level model d̂ = (.121 + .169 + π2/3)/(π2/3)

0 0 Ψ((−.391)/
√
d̂) .407

0 1 Ψ((−.391 + .323)/
√
d̂) .484

1 0 Ψ((−.391 + .979)/
√
d̂) .638

1 1 Ψ((−.391 + .323 + .979− .501)/
√
d̂) .597

3-level model using Population Average Estimates

0 0 Ψ(−.367) .409

0 1 Ψ(−.367 + .303) .484

1 0 Ψ(−.367 + .918) .634

1 1 Ψ(−.367 + .303 + .918− .470) .595

d = design effect = (σ2υ(3) + σ2υ(2) + σ2)/σ2
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Within-Clusters / Between-Clusters components

Within-clusters model - level 1 (j = 1, . . . , ni subjects)

logitij = b0i + b1iPRETHKSij

Between-clusters model - level 2 (i = 1, . . . , N clusters)

b0i = β0 + β2CCi + β3TVi + β4(CCi × TVi) + υ0i

b1i = β1

υ0i ∼ NID(0, σ2
υ)
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β0 = (PRETHKS adjusted) logit for CC=no TV=no sub-
group

β1 = effect of PRETHKS on POSTTHKS

β2 = (PRETHKS adjusted) logit diff. between CC=yes vs
CC=no (for TV=no)

β3 = (PRETHKS adjusted) logit diff. between TV=yes vs
TV=no (for CC=no)

β4 = (PRETHKS adjusted) difference in logit attributable
to interaction

υ0i = random cluster deviation
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3-level model

Within-classrooms (and schools) model - level 1
(k = 1, . . . , nij students)

logitijk = b0ij + b1ijPRETHKSijk

Between-classrooms (within-schools) model - level 2
(j = 1, . . . , ni classrooms)

b0ij = b0i + υ0ij

b1ij = b1i

Between-schools model - level 3 (i = 1, . . . , N schools)

b0i = β0 + β2CCi + β3TVi + β4(CCi × TVi) + υ0i

b1i = β1

υ0ij ∼ NID(0, σ2
υ(2)) and υ0i ∼ NID(0, σ2

υ(3))
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Reopening TVBC.mum and selecting PreTHKS as an explanatory
variable
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Reopening TVBSC.mum and selecting PreTHKS as an explanatory
variable
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THKS Post-Int (dichotomized) Scores - LR Estimates (std err)
Multilevel

Fixed 2-level 3-level
intercept -1.217 ∗∗∗ -1.253 ∗∗∗ -1.246 ∗∗∗

(.141) (.170) (.196)
PRETHKS .400 ∗∗∗ .401 ∗∗∗ .395 ∗∗∗

(.044) (.046) (.046)
CC .973 ∗∗∗ .988 ∗∗∗ 1.038 ∗∗∗

(.150) (.197) (.245)
TV .316 ∗∗ .287 .333

(.143) (.192) (.236)
CC× TV -.413 ∗∗ -.369 -.464

(.210) (.277) (.343)
class var .219 .165

(.080) (.081)
school var .063

(.062)

-2 log L 2073.3 2057.18 2055.70

∗∗∗p < .01 ∗∗p < .05 ∗p < .10 (Wald-tests not done for vars)
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Calculation of ICC - 2 level models

r =
σ2
υ

σ2
υ + σ2

Random classrooms model

r =
.219

.219 + π2/3
= .062

⇒ 6.2% of the unexplained variation is at the classroom level
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Calculation of ICC - 3 level model

Level-3 (likeness of students in the same school)

r =
σ2
υ(3)

σ2
υ(3) + σ2

υ(2) + σ2 =
.063

.063 + .165 + π2/3
= .018

Level-2 (likeness of students in same classroom & school)

r =
σ2
υ(3) + σ2

υ(2)

σ2
υ(3) + σ2

υ(2) + σ2 =
.063 + .165

.063 + .165 + π2/3
= .063

Level-2 (likeness of classes in the same school)

r =
σ2
υ(3)

σ2
υ(3) + σ2

υ(2)
=

.063

.063 + .165
= .276

• r < .5 : the school level contributes less to variability than the class level

• average classroom post THKS scores are moderately similar within schools
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CC TV logistic Ψ(z) = [1 + exp(−z)]−1 estimate

Fixed-effects model

0 0 Ψ(−1.217 + 2.152× .400) .412

0 1 Ψ(−1.217 + .316 + 2.087× .400) .483

1 0 Ψ(−1.217 + .973 + 2.050× .400) .640

1 1 Ψ(−1.217 + .316 + .973− .413 + 1.979× .400) .610

Random-classrooms model d̂ = (.219 + π2/3)/(π2/3)

0 0 Ψ((−1.253 + 2.152× .401)/
√
d̂) .407

0 1 Ψ((−1.253 + .287 + 2.087× .401)/
√
d̂) .469

1 0 Ψ((−1.253 + .988 + 2.050× .401)/
√
d̂) .632

1 1 Ψ((−1.253 + .287 + .988− .369 + 1.979× .401)/
√
d̂) .606

Random-classrooms model using Population Average Estimates

0 0 Ψ(−1.195 + 2.152× .383) .408

0 1 Ψ(−1.195 + .287 + 2.087× .383) .469

1 0 Ψ(−1.195 + .988 + 2.050× .383) .630

1 1 Ψ(−1.195 + .287 + .988− .369 + 1.979× .383) .605

d = design effect = (σ2υ + σ2)/σ2
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CC TV logistic Ψ(z) = [1 + exp(−z)]−1 estimate

3-level model d̂ = (.063 + .165 + π2/3)/(π2/3)

0 0 Ψ((−1.246 + 2.152× .395)/
√
d̂) .405

0 1 Ψ((−1.246 + .333 + 2.087× .395)/
√
d̂) .479

1 0 Ψ((−1.246 + 1.038 + 2.050× .395)/
√
d̂) .642

1 1 Ψ((−1.246 + .333 + 1.038− .464 + 1.979× .395)/
√
d̂) .605

3-level model using Population Average Estimates

0 0 Ψ(−1.187 + 2.152× .377) .407

0 1 Ψ(−1.187 + .316 + 2.087× .377) .479

1 0 Ψ(−1.187 + .988 + 2.050× .377) .640

1 1 Ψ(−1.187 + .316 + .988− .442 + 1.979× .377) .604

d = design effect = (σ2υ(3) + σ2υ(2) + σ2)/σ2
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Summary

•Mixed logistic regression model is direct extension of ordinary
logistic regression

• Useful approach for multilevel data

• Software is available in Supermix (and other programs)

• (Extended) methods are available for ordinal, nominal, count
outcomes

• Similar models can be used for longitudinal, albeit more issues

– more random effects are typically necessary

– missing data and attrition
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