Mixed Models for Longitudinal Binary Outcomes

Don Hedeker Department of Public Health Sciences Biological Sciences Division University of Chicago

hedeker@uchicago.edu

Hedeker, D. (2005). Generalized linear mixed models. In B. Everitt & D. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. Wiley.

Hedeker, D. & Gibbons, R.D. (2006). Longitudinal Data Analysis, chapter 9. Wiley.

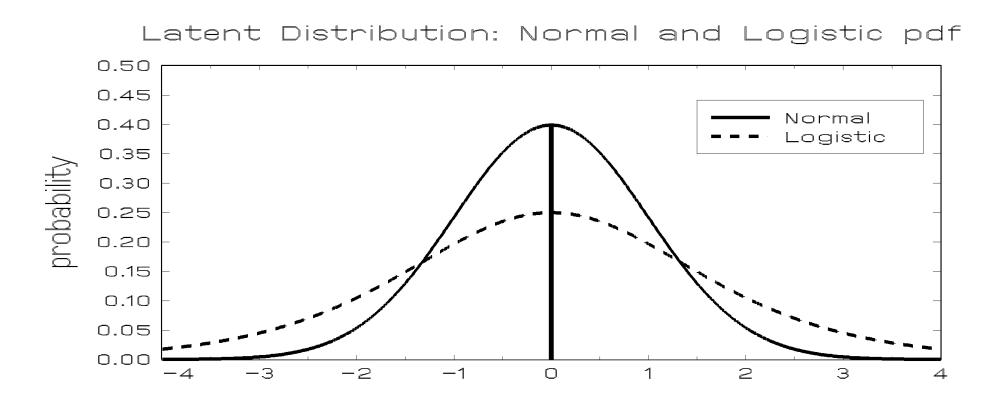
This work was supported by National Institute of Mental Health Contract N44MH32056.

Mixed-effects models for categorical outcomes

- dichotomous outcomes
 - mixed-effects logistic regression
- ordinal outcomes
 - $-\operatorname{mixed}-\operatorname{effects}$ ordinal logistic regression
 - * proportional odds model
 - * partial or non-proportional odds model
- nominal outcomes
 - mixed-effects nominal logistic regression
- discrete or grouped time-to-event data
 - mixed-effects dichotomous or ordinal regression
 * complementary log-log link for proportional (and non-proportional) hazards models

Logistic Regression Model

$$\log\left[\frac{P(Y_i=1)}{1-P(Y_i=1)}\right] = \boldsymbol{x}'_i \boldsymbol{\beta}$$


- Dichotomous outcome (Y = 0 absence, Y = 1 presence).
- Function that links probabilities to regressors is the logit (or log odds) function $\log [P/(1-P]]$. Logit is called the link function.

The model can be written in terms of probabilities:

$$P(Y_i = 1) = \frac{1}{1 + \exp(-\boldsymbol{x}'_i \boldsymbol{\beta})}$$

• Model is a linear model for the logits, not for the probabilities. Logits can take on any values between negative and positive infinity, probabilities can only take on values between 0 and 1 Dichotomous Response and Threshold Concept Continuous y_i - an unobservable latent variable - related to dichotomous response Y_i via "threshold concept"

Response occurs $(Y_i = 1)$ if $\gamma < y_i$ otherwise, a response does not occur $(Y_i = 0)$

The Threshold Concept in Practice

"How was your day?" (what is your satisfaction level today?)

• Satisfaction may be continuous, but we usually emit a dichotomous response:

Model for Latent Continuous Responses

Consider the model with p covariates for the latent response strength y_i (i = 1, 2, ..., N):

$$y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + \varepsilon_i$$

- probit: $\varepsilon_i \sim \text{standard normal (mean=0, variance=1)}$
- logistic: $\varepsilon_i \sim \text{standard logistic (mean=0, variance} = \pi^2/3)$

 $\Rightarrow \beta$ estimates from logistic regression are larger (in abs. value) than from probit regression by approximately $\sqrt{\pi^2/3} = 1.8$

Underlying latent variable

- useful way of thinking of the problem
- not an essential assumption of the model

Random-intercept Logistic Regression Model

Consider the model with p covariates for the response Y_{ij} for subject $i \ (i = 1, 2, ..., N)$ at time $j \ (j = 1, 2, ..., n_i)$:

$$\log \left[\frac{P(Y_{ij} = 1 \mid v_{0i})}{1 - P(Y_{ij} = 1 \mid v_{0i})} \right] = \mathbf{x}'_{ij} \mathbf{\beta} + v_{0i}$$

where

$$Y_{ij}$$
 = dichotomous response for subject *i* at time *j*

 $\boldsymbol{x}_{ij} = (p+1) \times 1$ covariate vector (includes 1 for intercept) $\boldsymbol{\beta} = (p+1) \times 1$ vector of unknown parameters

 v_{0i} = subject effects distributed $\mathcal{NID}(0, \sigma_v^2)$

Model for Latent Continuous Responses

Consider the model with p covariates for the $n_i \times 1$ latent response strength y_{ij} :

$$y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_{0i} + \varepsilon_{ij}$$

where assuming

- $\varepsilon_{ij} \sim$ standard normal (mean 0 and $\sigma^2 = 1$) leads to mixed-effects probit regression
- $\varepsilon_{ij} \sim$ standard logistic (mean 0 and $\sigma^2 = \pi^2/3$) leads to mixed-effects logistic regression

Underlying latent variable

- not an essential assumption of the model
- useful for obtaining intra-class correlation (r)

$$r = \frac{\sigma_v^2}{\sigma_v^2 + \sigma^2}$$

and for design effect (d)

$$d = \frac{\sigma_v^2 + \sigma^2}{\sigma^2} = 1/(1-r)$$

ratio of actual variance to the variance that would be obtained by simple random sampling (holding sample size constant)

Scaling of regression coefficients

 β estimates from mixed-effects model are larger (in abs. value) than from fixed-effects model by approximately

$$\sqrt{d} = \sqrt{\frac{\sigma_v^2 + \sigma^2}{\sigma^2}}$$

because

- $V(y) = \sigma_v^2 + \sigma^2$ in mixed-effects model
- $V(y) = \sigma^2$ in fixed-effects model

difference depends on size of random-effects variance σ_v^2

Treatment-Related Change Across Time

Data from the NIMH Schizophrenia collaborative study on treatment related changes in overall severity. IMPS item 79, *Severity of Illness*, was scored as:

1 = normal

2 =borderline mentally ill

3 = mildly ill

4 = moderately ill

- 5 = markedly ill
- 6 = severely ill
- 7 = among the most extremely ill

The experimental design and corresponding sample sizes:


	S	ampl	e s	ize at	t V	Vee	ek	
Group	0	1	2	3	4	5	6	completers
PLC (n=108)	107	105	5	87	2	2	70	65%
DRUG $(n=329)$	327	321	9	287	9	7	265	81%

Drug = Chlorpromazine, Fluphenazine, or Thioridazine

Main question of interest:

• Was there differential improvement for the drug groups relative to the control group?

• Under SSI, Inc > "SuperMix (English)" or "SuperMix (English) Student"

• Under "File" click on "Open Spreadsheet"

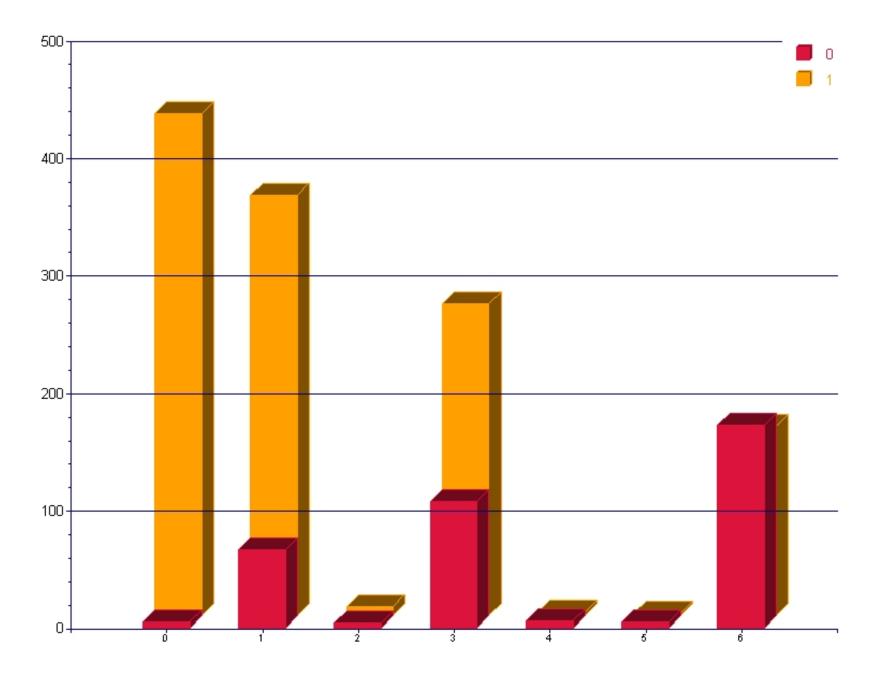
File Help	
New Spreadsheet	Ctrl+N
Open Spreadsheet	Ctrl+O
Import Data File	Ctrl+I

• Open C:\SuperMixEn Examples\Workshop\Binary\SCHIZX1.ss3 (or C:\SuperMixEn Student Examples\Workshop\Binary\SCHIZX1.ss3)

Open Spreadsheet	X
Look in: 🚺 Binary	▼ 🗢 🗈 🖝
Name	Date modified Ty
SCHIZX1.ss3	5/17/2007 11:12 PM SS
tvsfpors.ss3	5/17/2007 11:11 PM SS
•	•
File name: SCHIZX1	Open
Files of type: Spreadsheets (*.ss3	3) Cancel

C:\SuperMixEn Examples\Workshop\Binary\SCHIZX1.ss3

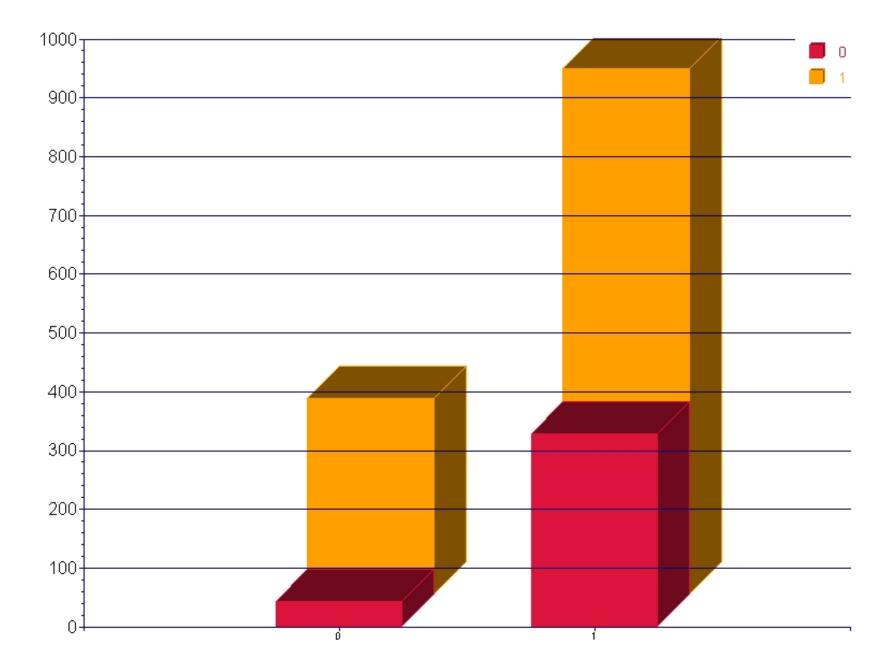
03								
	(A)_Patient	(B)_Imps79	(C)_Imps79D	(D)_Imps790	(E)_TxDrug	(F)_Week	(G)_SqrtWee (H)_Tx*SWe
1	1103	5.50	1	4	1	0	0.00	0.00 -
2	1103	3.00	0	2	1	1	1.00	1.00
3	1103	-9.00	-9	-9	1	2	1.41	1.41
4	1103	2.50	0	2	1	3	1.73	1.73
5	1103	-9.00	-9	-9	1	4	2.00	2.00
6	1103	-9.00	-9	-9	1	5	2.24	2.24
7	1103	4.00	1	2	1	6	2.45	2.45
8	1104	6.00	1	4	1	0	0.00	0.00
9	1104	3.00	0	2	1	1	1.00	1.00
10	1104	-9.00	-9	-9	1	2	1.41	1.41
11	1104	1.50	0	1	1	3	1.73	1.73
12	1104	-9.00	-9	-9	1	4	2.00	2.00
13	1104	-9.00	-9	-9	1	5	2.24	2.24
14	1104	2.50	0	2	1	6	2.45	2.45
15	1105	4.00	1	2	1	0	0.00	0.00
16	1105	3.00	0	2	1	1	1.00	1.00
17	1105	-9.00	-9	-9	1	2	1.41	1.41
18	1105	1.00	0	1	1	3	1.73	1.73
19	1105	-9.00	-9	-9	1	4	2.00	2.00
20	1105	-9.00	-9	-9	1	5	2.24	2.24
21	1105	-9.00	-9	-9	1	6	2.45	2.45
22	1106	3.00	0	2	1	0	0.00	0.00
23	1106	1.00	0	1	1	1	1.00	1.00
24	1106	-9.00	-9	-9	1	2	1.41	1.41
25	1106	1.50	0	1	1	3	1.73	1.73
26	1106	-9.00	-9	-9	1	4	2.00	2.00
27	1106	-9.00	-9	-9	1	5	2.24	2.24
28	1106	1.00	0	1	1	6	2.45	2.45


Select Imps79D column, then "Edit" > "Set Missing Value"

									Apply
	(A)_Patient	(B)_Imps79	(C)_Imps79D	(D)_Imps790	(E)_TxDrug	(F)_Week	(G)_SqrtWee	(H)_Tx*SWe	
1	1103	5.50	1	4	1	0	0.00	0.00	
2	1103	3.00	0	2	1	1	1.00	1.00	
3	1103	-9.00	-9	-9	1	2	1.41	1.41	
4	1103	2.50	0	2	1	3	1.73	1.73	
5	1103	-9.00	-9	-9	1	4	2.00	2.00	
6	1103	-9.00	-9	-9	1	5	2.24	2.24	
7	1103	4.00	1	2	1	6		2.45	
8	1104	6.00	1	4	1	0	0.00	0.00	
9	1104	3.00	0	2	1	1	1.00	1.00	
10	1104	-9.00	-9	-9	1	2	1.41	1.41	
11	1104	1.50	0	1	1	3	1.73	1.73	
12	1104	-9.00	-9	-9		4	2.00	2.00	
13	1104	-9.00	-9	-9	1	5	2.24	2.24	
14	1104	2.50	0	2	1	6	2.45	2.45	
15	1105	4.00	1	2	1	0	0.00	0.00	Missing Value Code: 9
16	1105	3.00	0	2	1	1	1.00	1.00	
17	1105	-9.00	-9	-9	1	2	1.41	1.41	OK Cance
18	1105	1.00	0	1	1	3	1.73	1.73	
19	1105	-9.00	-9	-9	1	4		2.00	
20	1105	-9.00	-9	-9	1	5	2.24	2.24	
21	1105	-9.00	-9	-9	1	6	2.45	2.45	
22	1106	3.00	0	2	1	0	0.00	0.00	
23	1106	1.00	0	1	1	1	1.00	1.00	
24	1106	-9.00	-9	-9	1	2	1.41	1.41	
25	1106	1.50	0	1	1	3	1.73	1.73	
26	1106	-9.00	-9	-9	1	4	2.00	2.00	
27	1106	-9.00	-9	-9	1	5	2.24	2.24	
28	1106	1.00	0	1	1	6	2.45	2.45	

Select "File" > "Data-based Graphs" > "Bivariate"

ist of Variables	22		
Name	<u> </u>	X	
Patient			
Imps79			
Imps79D			
Imps790			
TxDrug			
Week	E		
SqrtWeek			
Tx*SWeek			
	1		
 Scatter Plot Line Only Plot Scatter and Line Box and Whisker 			-
C Line Only Plot C Scatter and Line C Box and Whisker P Bivariate Bar Cha	int		
C Line Only Plot C Scatter and Line C Box and Whisker	int	be selec	cted


Imps79D vs. Week

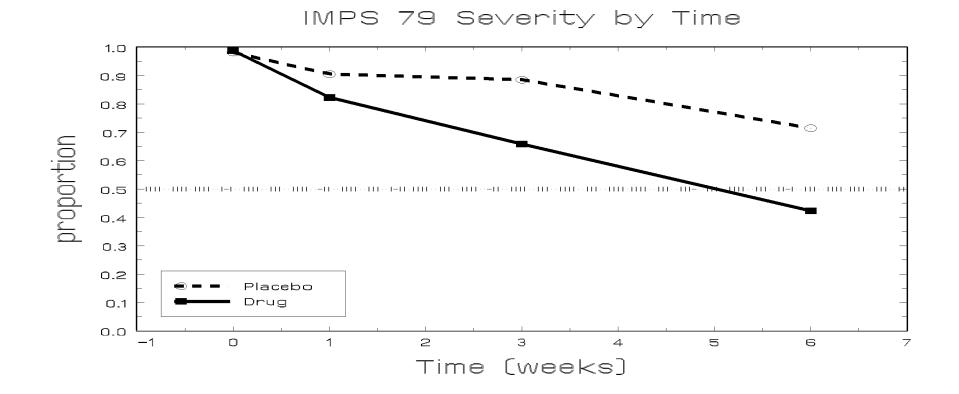
Select "File" > "Data-based Graphs" > "Bivariate"

List of Variables			
Name	Y	X	
Patient			
Imps79			
Imps79D			
Imps790			
TxDrug			
Week			
SqrtWeek			
Tx*SWeek			
 Scatter Plot Line Only Plot Scatter and Line Plot Box and Whisker Bivariate Bar Chart 			•

Imps79D vs. TxDrug

Observed proportions \geq "moderately ill"

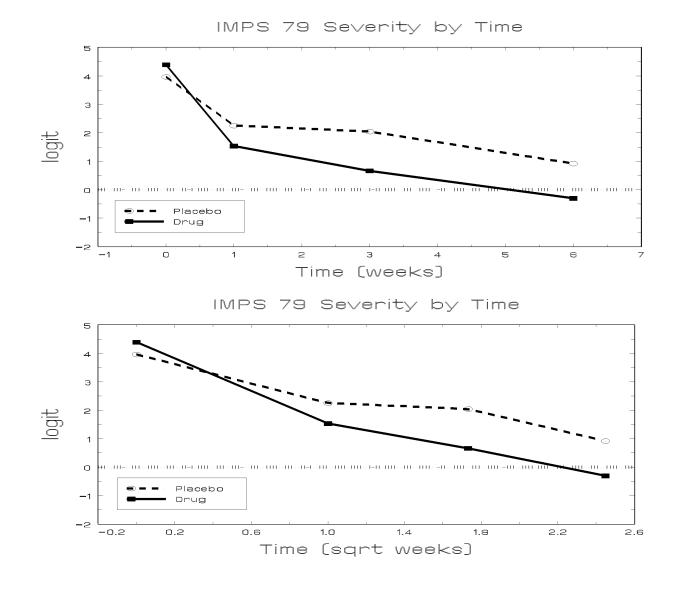
	week 0	week 1	week 3	<u>week 6</u>
placebo	.98	.91	.89	.71
drug	.99	.82	.66	.42


Observed odds \geq "moderately ill"

	$\underline{\text{week } 0}$	week 1	week 3	<u>week 6</u>
placebo	52.5	9.50	7.70	2.50
drug	80.8	4.63	1.93	.73
ratio	.65	2.05	3.99	3.42

Observed log odds \geq "moderately ill"

	week 0	week 1	$\underline{\text{week } 3}$	week 6
placebo	3.96	2.25	2.04	.92
drug	4.39	1.53	.66	31
difference	43	.72	1.38	1.23
$\exp(\text{odds ratio})$.65	2.05	3.99	3.42


Observed Proportions across Time by Condition

• model is not linear in terms of probabilities

$$P(Y_{ij} = 1 \mid v_{0i}) = \frac{1}{1 + \exp\left[-\left(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_{0i}\right)\right]}$$

Observed Logits across Time by Condition

model is linear in terms of logits:

$$\log \left[\frac{P(Y_{ij} = 1 \mid \upsilon_{0i})}{1 - P(Y_{ij} = 1 \mid \upsilon_{0i})} \right] = \boldsymbol{x}'_{ij} \boldsymbol{\beta} + \upsilon_{0i}$$

Within-Subjects / Between-Subjects components

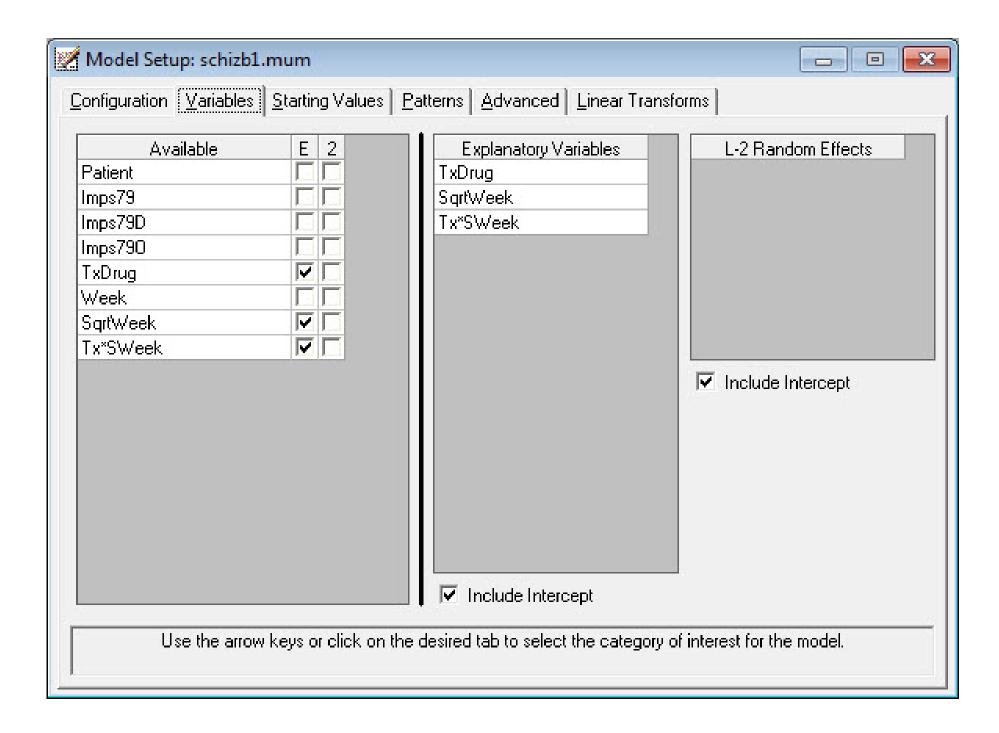
Within-subjects model - level 1 $(j = 1, ..., n_i \text{ obs})$ $logit_{ij} = b_{0i} + b_{1i}\sqrt{Week_j}$

<u>Between-subjects model</u> - level 2 (i = 1, ..., N subjects)

$$b_{0i} = \beta_0 + \beta_2 Gr p_i + v_{0i}$$
$$b_{1i} = \beta_1 + \beta_3 Gr p_i$$
$$v_{0i} \sim \mathcal{NID}(0, \sigma_v^2)$$

Under "File" click on "Open Existing Model Setup"

File] Edit Window Help	
	New Project	Ctrl+N
	Import Data File	Ctrl+I
	Close	
	New Model Setup	Ctrl+W
	Open Existing Model Setup	Ctrl+E
	New Syntax File	
	Open Syntax File	
	Open Text File	
	Data-based Graphs	•
	Open Graph	Ctrl+G
	Save	Ctrl+S
	Save As	
	Exit	

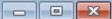

Open C:\SuperMixEn Examples\Workshop\Binary\schizb1.mum

(or C:\SuperMixEn Student Examples\Workshop\Binary\schizb1.mum)

				8== ▼	
🧮 Desktop	Name	Date modified	Туре	Size	
Downloads	schizb1	1/21/2013 1:35 PM	MUM File		3 KB
Recent Places	schizb2	1/21/2013 1:56 PM	MUM File		3 KB
💱 Dropbox	TVBC	5/18/2007 12:14 AM	MUM File		4 KB
	TVBS	5/18/2007 12:14 AM	MUM File		4 KB
Libraries Documents Music	TVBSC	5/18/2007 12:15 AM	MUM File		4 KB
PicturesVideos					
Computer					
🏭 OS (C:)					
🖵 Units (\\SPH-File	-				

Note "Dependent Variable Type" should be "binary"

Model Setup: schizb1.m	num		- 0 X
<u>C</u> onfiguration <u>V</u> ariables <u></u>	<u>S</u> tarting Values <u>P</u> atterns	<u>A</u> dvanced <u>L</u> inear Transforms	1
Title 1: Schiz BINARY out	tcome		
Title 2: random intercept r	nodel		
Dependent Variable Type:	binary	Level-2 IDs:	Patient
Dependent Variable:	Imps79D	Level-31Ds:	-
Categories:	Value 1 0	Write Bayes Estimates:	no 💌
	2 1	Convergence Criterion:	0.0001
		Number of Iterations:	100
Missing Values Present:	true	Perform Crosstab	oulation: no 💌
Missing Value for the Dep	endent Var: -9.0		
Global Mi	ssing Value: -9.0	Output Type:	standard 🗨
Select the form o	of the dependent variable.	. The options on the screens will c	hange as required.



Note "Optimization Method" should be "adaptive quadrature"

Model Setup: schizb1.mum	
Configuration Variables Starting Values Patterns Advanced Linear Transforms	
General Settings Unit Weighting: equal	
Optimization Method: adaptive quadrature Number of Quadrature Points: 25	
Dependent (Binary) Variable Settings Distribution Model: Bernoulli Function Model: Iogistic	•
Estimate Scale: none	

🚰 schizb1.out										
Schiz BINARY o	outcome									
random interce	pt model									
0============	A CONTRACTOR OF A SAME AND A									
1000										
Mode	el and Data	Desci	riptions							
Sampling Dist	ribution				= Berno	ulli				
Link Function	1				= Logis	stic				
PROB (Success)	= 1.0/[1.0	+EXP(-	ETA)]							
Number of Lev	vel-2 Units				437					E
Number of Lev					1603					
Number of Lev		-	Level-2	Unit	=					
4 4	3 4	4	4	4	4	4	з	4	4	
4 2	3 4	3	4	3		4	4	3	3	
2 4	4 4	4	4	3		4	4	4	4	
4 4	4 4		з	4		4	4	4	3	
4 4	2 2	4	5	4	2	4	4	з	4	
4 3	2 3	4	4	4	4	4	4	2	4	
4 4	5 4	4	2	2	4	2	4	4	3	
3 4	4 4	4	4	4	4	4	з	3	4	
2 3	4 4	4	2	5	з	4	4	2	4	
4 4	2 4	4	4	4	4	4	4	4	4	
5 2	4 3	4	4	2	2	4	4	4	4	
4 2	4 4	4	4	4	4	4	4	4	4	
4 4	4 2	4	4	2	4	4	4	3	4	
2 4	4 3	2	з	4	4	3	з	4	3	
4 4	4 4	4	4	4	4	4	4	4	4	
4 4	2 3	3	5	4	з	4	4	з	2	
4 4	4 4	4	з	3	4	4	4	4	4	
4 4	4 4	4	4	4	4	4	4	з	4	
4 4	4 4	4	2	3	4	4	4	2	4	
4 4	4 3	4	4	4	4	4	4	4	4	
3 4	4 3		4	2	4	4	4	4	2	
4 4	4 2	4	4	4	3	3	4	3	4	
2 4	4 4	3	3	4	4	4	4	3	3	
4 3	4 4	4	4	4	3	4	4	4	4	
4 3	3 4	2	4	4	4	4	4	4	4	
4 3	4 4	3	3	4	2	4	3	3	3	
4 4	4 4	4	4	4	3	2	3	4	4	*
∢				11						Þ
Save As Clos	se									

🚰 schizb1.out

.

E

Number	of	quadrature points =	25
Number	of	free parameters =	5
Number	of	iterations used =	6

-21nL (deviance statistic) =	1249.73465
Akaike Information Criterion	1259.73465
Schwarz Criterion	1286.63281

Estimated regression weights

		Standard		
Parameter	Estimate	Error	z Value	P Value
intercept	5.3851	0.6303	8.5432	0.0000
TxDrug	-0.0247	0.6533	-0.0378	0.9698
SqrtWeek	-1.4996	0.2906	-5.1606	0.0000
Tx*SWeek	-1.0143	0.3338	-3.0385	0.0024

Odds Ratio and 95% Odds Ratio Confidence Intervals

			Bou	inds
Parameter	Estimate	Odds Ratio	Lower	Upper
intercept	5.3851	218.1386	63.4125	750.3956
TxDrug	-0.0247	0.9756	0.2711	3.5106
SqrtWeek	-1.4996	0.2232	0.1263	0.3945
Tx*SWeek	-1.0143	0.3627	0.1885	0.6977

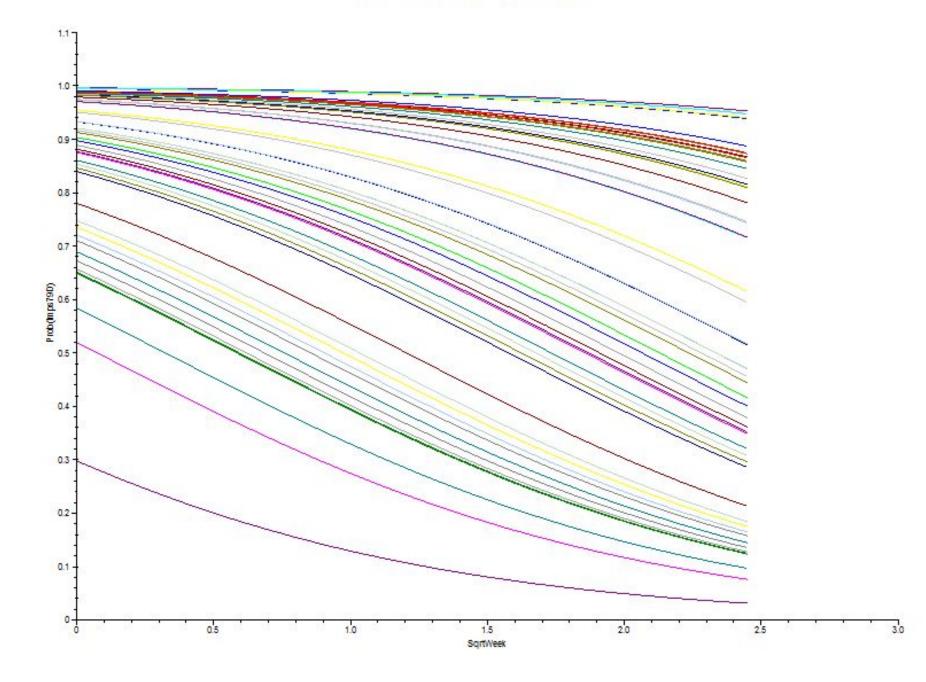
Estimated level 2 variances and covariances

stimate I	Error z	Value	P Value	
	0.9458 4	.7345	0.0000	- T
		4.4781 0.9458 4	4.4781 0.9458 4.7345	4.4781 0.9458 4.7345 0.0000

😤 schizb1.out

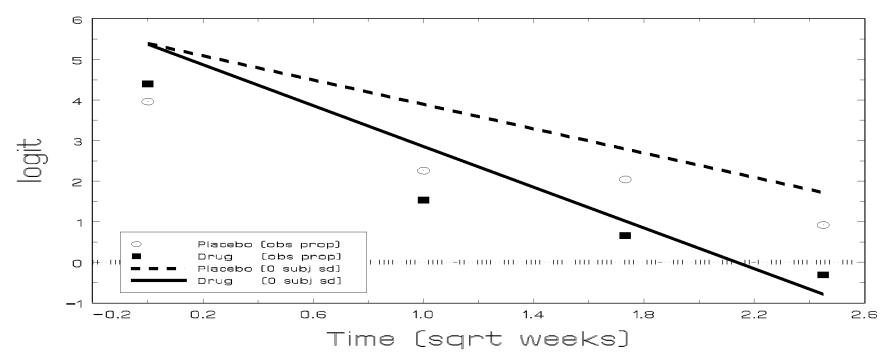
httracluster correlation = 4.4781 / (4.4781 + (pi*pi/3)) = 0.576 Population Average Estimates Standard Parameter Estimate Error z Value P Value intercept 3.5427 0.4628 7.6549 0.0000 TxDrug -0.0546 0.5162 -0.1058 0.9157 SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx+SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio Confidence Intervals Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424 Tx*SWeek -0.5964 0.5508 0.3373 0.8994	tracluster correla	tion = 4.4781 /				
Standard Parameter Estimate Error z Value P Value intercept 3.5427 0.4628 7.6549 0.0000 TxDrug -0.0546 0.5162 -0.1058 0.9157 SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx*SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424			/ (4.4781 + (pi*pi/3)) =	0.576	
Parameter Estimate Error z Value P Value intercept 3.5427 0.4628 7.6549 0.0000 TxDrug -0.0546 0.5162 -0.1058 0.9157 SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx+SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424		Population Avera	age Estimates			
intercept 3.5427 0.4628 7.6549 0.0000 TxDrug -0.0546 0.5162 -0.1058 0.9157 SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx*SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
intercept 3.5427 0.4628 7.6549 0.0000 TxDrug -0.0546 0.5162 -0.1058 0.9157 SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx*SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
TxDrug -0.0546 0.5162 -0.1058 0.9157 SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx*SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
SqrtWeek -1.0503 0.2238 -4.6936 0.0000 Tx*SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
Tx*SWeek -0.5964 0.2502 -2.3838 0.0171 Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
Odds Ratio and 95% Odds Ratio Confidence Intervals Bounds Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
Parameter Estimate Odds Ratio Lower Upper intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424				Paur		
intercept 3.5427 34.5605 13.9519 85.6102 TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424	Parameter	Estimate	Odds Ratio	Contraction of the second	Sector S	
TxDrug -0.0546 0.9468 0.3443 2.6040 SqrtWeek -1.0503 0.3498 0.2256 0.5424						
SqrtWeek -1.0503 0.3498 0.2256 0.5424	intercept	3.5427	34.5605	13.9519	85.6102	
	TxDrug	-0.0546	0.9468	0.3443	2.6040	
Tx*SWeek -0.5964 0.5508 0.3373 0.8994	SqrtWeek	-1.0503	0.3498	0.2256	0.5424	
	Tx*SWeek	-0.5964	0.5508	0.3373	0.8994	
o======o SuperMix used 0.31 seconds CPU o====================================	SuperMix used	.31 seconds CPU				

SuperMix is FAST for full-likelihood estimation of non-normal models, and up to three level models


Empirical Bayes Estimates of Random Effects Select "Analysis" > "View Level-2 Bayes Results"

1103.00	1	-1.3733085	1.4321507	intercept
1104.00	1	-2.8224656	1.4899540	intercept
1105.00	1	-2.7461602	1.5916663	intercept
1106.00	1	-4.4004625	1.6973596	intercept
1107.00	1	0.9689451	2.7883488	intercept
1108.00	1	1.9284094	2.2011548	intercept
1109.00	1	-2.8224656	1.4899540	intercept
1110.00	1	1.9284094	2.2011548	intercept
1111.00	1	0.1052776	1.5715906	intercept
1112.00	1	-1.3070862	1.7612203	intercept
1113.00	1	-1.3733085	1.4321507	intercept
1114.00	1	0.1052776	1.5715906	intercept
1115.00	1	0.9689451	2.7883488	intercept
1118.00	1	0.4754895	3.4393902	intercept
1119.00	1	0.0921545	1.5895843	intercept
1124.00	1	0.9689451	2.7883488	intercept
1125.00	1	-2.8915499	1.5039224	intercept
1129.00	1	-1.1462781	1.6120394	intercept
1136.00	1	0.5911155	3.2346722	intercept
1140.00	1	0.9689451	2.7883488	intercept
1301.00	1	-2.5201938	1.2199075	intercept
1302.00	1	-2.8224656	1.4899540	intercept
1303.00	1	-1.0905895	1.7969072	intercept

ID, random effect number, estimate, variance, name


Close output, select "File" > "Model-based Graphs" > "Equations"

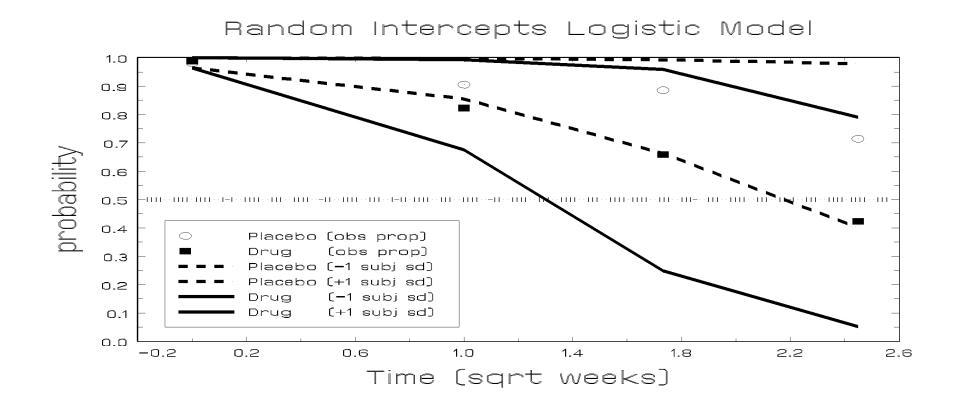
Name	Predictor	Group	Mark	-
intercept				
TxDrug				
SqrtWeek				
Tx*SWeek				
Patient				
				Ŧ
- Homaning pro	dictors fixed at			Ţ
-			ans	Ţ
-	dictors fixed at		ans	Ţ
C Remaining pre	dictors fixed at ession model riable may be s	their me		Ţ

Estimated (subject-specific) Logits across Time by Condition: *random-intercepts model*

Random Intercepts Logistic Model

$$\log \left[\frac{P(Y_{ij} = 1 \mid v_{0i})}{1 - P(Y_{ij} = 1 \mid v_{0i})} \right] = 5.39 - .025 D_i - 1.50 T_j - 1.01 (D_i \times T_j) + v_{0i}$$
$$v_{0i} \sim \mathcal{NID}(0, \hat{\sigma}_v^2 = 4.48)$$

 $\boldsymbol{\beta}$ change in (conditional) logit due to \boldsymbol{x} for subjects with the same value of v_{0i} (the above plot is for $v_{0i} = 0$)


Random-intercepts Logistic Regression

$$logit_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_{0i}$$

- every subject has their own propensity for response (v_{0i})
- \bullet the influence of covariates ${\boldsymbol x}$ is determined controlling (or adjusting) for the subject effect
- the covariance structure, or dependency, of the repeated observations is explicitly modeled

- $\beta_0 = \log \text{ odds of response for a typical subject with } \boldsymbol{x} = 0 \text{ and } v_{0i} = 0$
- $eta = \log \text{ odds ratio for response associated with unit changes in } \boldsymbol{x}$ for the same subject value v_{0i} * referred to as "subject-specific" * how a *subject's* response probability depends on \boldsymbol{x}
- $\sigma_v^2 = \text{degree of heterogeneity across subjects in the probability}$ of response not attributable to \boldsymbol{x}
 - most useful when the objective is to make inference about *subjects* rather than the population average
 - interest is in the heterogeneity of subjects

Estimated Subject-Specific Probabilites

$$P(Y_{ij} = 1 \mid v_{0i}) = \frac{1}{1 + \exp\left[-(5.39 - .03 D_i - 1.50 T_j - 1.01 D_i T_j + v_{0i})\right]}$$

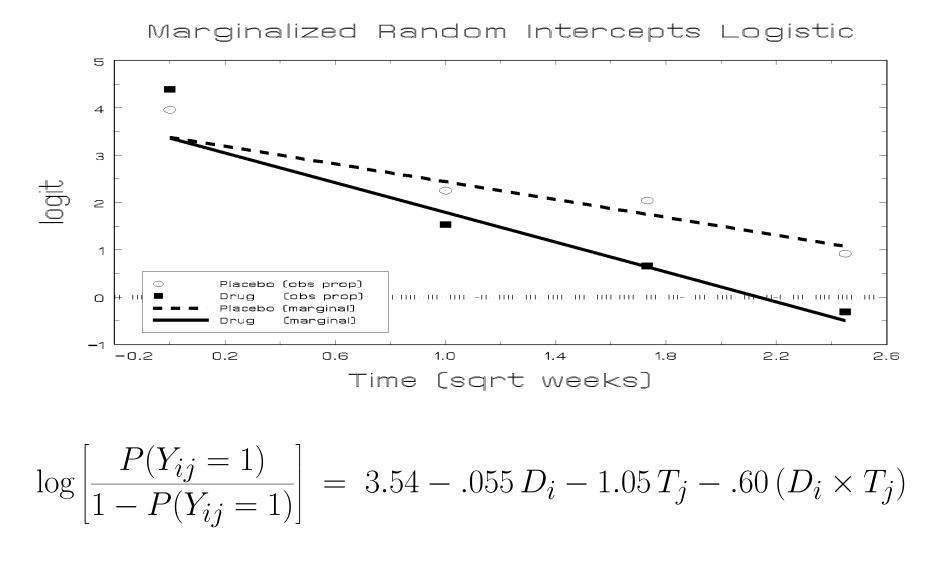
where
$$v_{0i} = \begin{cases} -1\sigma_v \\ 1\sigma_v \end{cases}$$
 and $\hat{\sigma}_v = 2.12$

Instead of the mixed model, consider the following marginal model

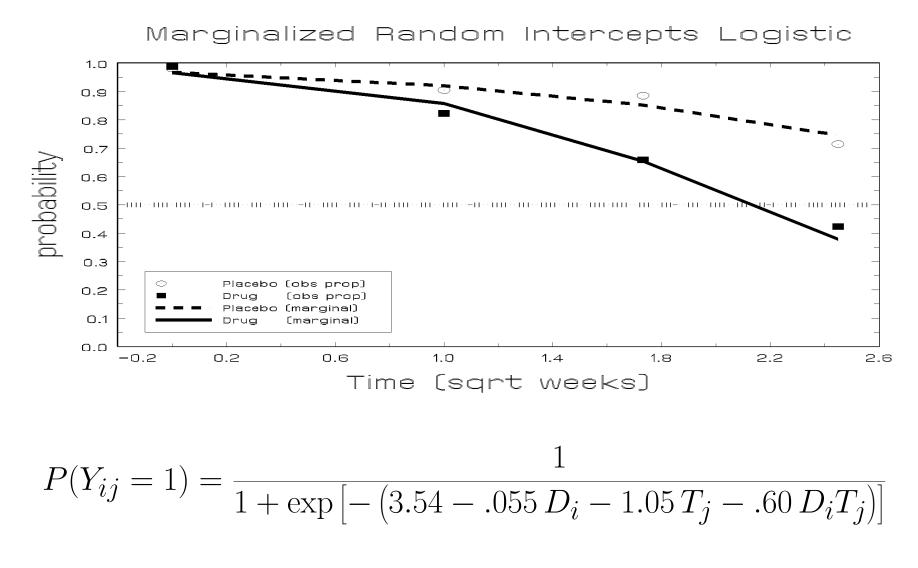
$$\log\left[\frac{P(Y_{ij}=1)}{1-P(Y_{ij}=1)}\right] = \boldsymbol{x}'_{ij}\boldsymbol{\beta}^{pa}$$

- $\boldsymbol{\beta}^{pa}$ have marginal or "population-average" interpretation
- Not conditional on subject random effects
- Estimates from a GEE model are of this type
- $\beta^{ss} \neq \beta^{pa}$ unless random effect variance(s) equal 0 (or $\beta = 0$)
- \Rightarrow Can one obtain β^{pa} from β^{ss} ?

For a random-intercept model with estimates $\hat{\boldsymbol{\beta}}^{ss}$ and $\hat{\sigma}_v^2$


$$\hat{\boldsymbol{\beta}}^{pa} \approx \hat{\boldsymbol{\beta}}^{ss} / \sqrt{\frac{\hat{\sigma}_{\upsilon}^2 + \pi^2/3}{\pi^2/3}}$$

• $\pi^2/3$ is the variance of the standard logistic distribution


- square-root term on the right-hand side can be viewed as the "marginalization" factor; transforms subject-specific parameters into their population-averaged counterparts
- In a random-intercepts model, the variance is equal across time; marginalization factor is equal across time and is a scalar
- For models with multiple random effects, this is not the case and so there is no simple relationship

• Hedeker, du Toit, Demirtas, Gibbons (2014) describe a general marginalization approach that has been implemented in the update of Supermix to yield Population Average Estimates

Calculation of the	intracluster correlat	tion			
residual variance = cluster variance =	= pi*pi / 3 (assumed) = 4.4781				
intracluster correl	ation = 4.4781 /	(4.4781 + (pi*pi/3)) =	0.576	
	Population Average	ge Estimates			
		Standard			
Parameter	Estimate	Error	z Value	P Value	
intercept	3.5427	0.4628		0.0000	
TxDrug	-0.0546	0.5162		0.9157	
SqrtWeek	-1.0503	0.2238	-4.6936	0.0000	
Tx*SWeek	-0.5964	0.2502	-2.3838	0.0171	
Odds Ratio a	and 95% Odds Ratio Cor	nfidence Interva	ls Bou	nds	
Parameter	Estimate	Odds Ratio	Lower	Upper	
intercept	3.5427	34.5605	13.9519	85.6102	
TxDrug	-0.0546	0.9468	0.3443	2.6040	
SqrtWeek	-1.0503	0.3498	0.2256	0.5424	
Tx*SWeek	-0.5964	0.5508	0.3373	0.8994	
					:
	0				
0	i 0.31 seconds CPU				_
100 Aug 2007 200 75					
SuperMix used	0				

 \Rightarrow these are the Population Average Estimates from Supermix

 \Rightarrow these are the Population Average Estimates from Supermix

Within-Subjects / Between-Subjects components <u>Within-subjects model</u> - level 1 $(j = 1, ..., n_i \text{ obs})$ $logit_{ij} = b_{0i} + b_{1i}\sqrt{Week_j}$

Between-subjects model - level 2 (i = 1, ..., N subjects)

$$b_{0i} = \beta_0 + \beta_2 Grp_i + v_{0i}$$

$$b_{1i} = \beta_1 + \beta_3 Grp_i + v_{1i}$$

 $oldsymbol{v}_i \sim \mathcal{NID}(oldsymbol{0}, oldsymbol{\Sigma}_{arepsilon})$

Under "File" click on "Open Existing Model Setup"

File] Edit Window Help	
	New Project	Ctrl+N
	Import Data File	Ctrl+I
	Close	
	New Model Setup	Ctrl+W
	Open Existing Model Setup	Ctrl+E
	New Syntax File	
	Open Syntax File	
	Open Text File	
	Data-based Graphs	•
	Open Graph	Ctrl+G
	Save	Ctrl+S
	Save As	
	Exit	

Open C:\SuperMixEn Examples\Workshop\Binary\schizb2.mum (or C:\SuperMixEn Student Examples\Workshop\Binary\schizb2.mum)

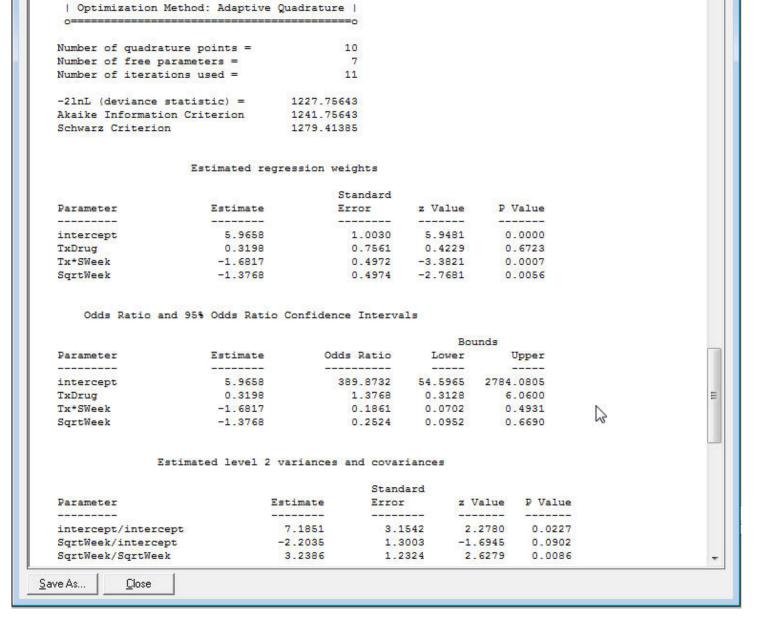
-					2	
)rganize 🔻 New fo	older				•	
Nesktop	^	Name	Date modified	Туре	Size	
bownloads	1	schizb1	1/21/2013 1:35 PM	MUM File		3 KB
Recent Places		schizb2	1/21/2013 1:56 PM	MUM File		3 KB
💱 Dropbox		TVBC	5/18/2007 12:14 AM	MUM File		4 KB
1 (haadiaa		TVBS	5/18/2007 12:14 AM	MUM File		4 KB
Libraries Documents	=	TVBSC	5/18/2007 12:15 AM	MUM File		4 KB
🎝 Music						
Pictures						
Judeos						
🖳 Computer						
🏭 OS (C:)						
Units (\\SPH-File	-					
Eile		ne: schizb2		 Mixed Up 	Models (*.mu	m)

Note "Dependent Variable Type" should be "binary"

Model Setup: schizb2.mum	
<u>Configuration</u> <u>Variables</u> <u>Starting</u> Values <u>Patterns</u> <u>A</u> dva	inced Linear Transforms
Title 1: Schiz BINARY outcome	
Title 2: random intercept and trend model	
Dependent Variable Type: binary	Level-2 IDs: Patient 💌
Dependent Variable: Imps79D 🔹	Level-3 IDs:
Categories: Value	Write Bayes Estimates: no
1 0 2 1	Convergence Criterion: 0.001
	Number of Iterations: 100
Missing Values Present: true	Perform Crosstabulation: no
Missing Value for the Dependent Var: 9.0	
Global Missing Value: -9.0	Output Type: 🛛 🚽
Select the form of the dependent variable. The op	otions on the screens will change as required.

SqrtWeek is a level-2 (subject) random effect

Model Setup: schizb2.	mum		
Configuration Variables	Starting Values	atterns Advanced Linear Trans	sforms
Available Patient Imps79 Imps79D Imps79D TxDrug Week SqrtWeek Tx*SWeek		Explanatory Variables TxDrug Tx*SWeek SqrtWeek	L-2 Random Effects SqrtWeek
		✓ Include Intercept	Include Intercept
Use the arrow	keys or click on the	e desired tab to select the category	of interest for the model.


Note "Optimization Method" should be "adaptive quadrature"

Model Setup: schizb2.mum	
Configuration Variables Starting Values Patterns Advanced Linear Transforms	
General Settings Unit Weighting: equal	
Optimization Method: adaptive quadrature Number of Quadrature Points: 10	
Dependent (Binary) Variable Settings	
Distribution Model: Bernoulli 🗾 Function Model: logistic	
Estimate Scale: none	
Select the optimization method. The default is adaptive quadrature.	

schizb2.out

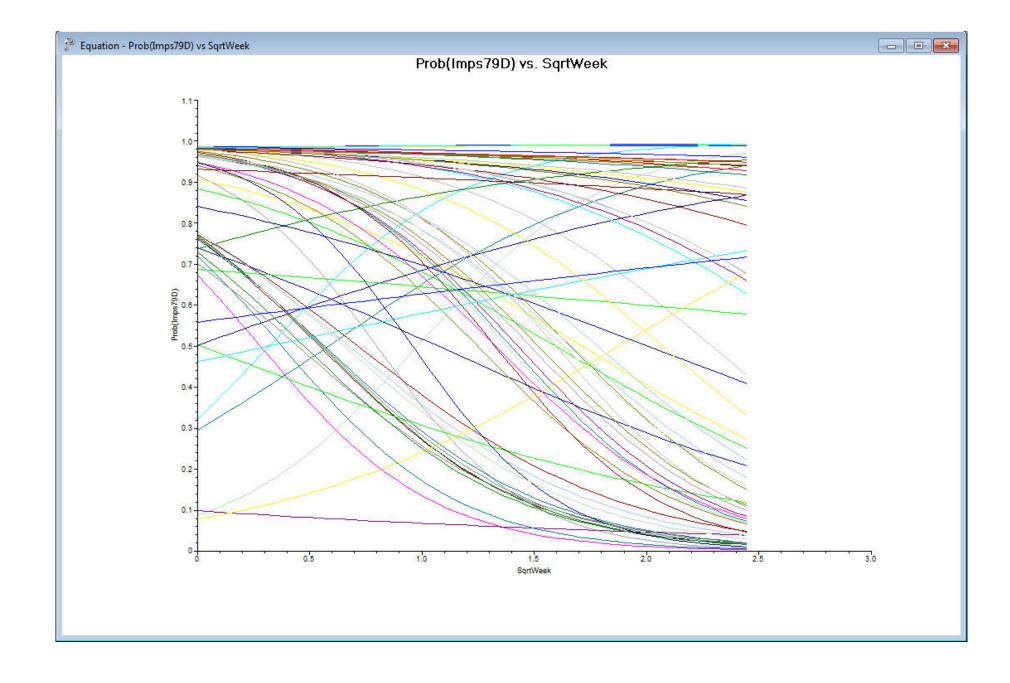
×.

 \Rightarrow Comparing models: $H0: \sigma_{v_1}^2 = \sigma_{v_{01}} = 0; \quad \chi_2^2 = 1249.73 - 1227.76 = 21.97, p < .001$

schizb2.out

	intercept	SqrtWeek			
intercept	7.185117				
SqrtWeek	-2.203484	3.238562			
Level 2 correl	lation matrix				
	intercept	SqrtWeek			
intercept	1.000000				
SqrtWeek	-0.456790	1.000000			
	Population	Average Estimates			
		Standard			
Parameter	Estimat		z Value		
intercept	3,463		7.2979	0.0000	
TxDrug	0.047		0.0879		
Tx*SWeek	-0.660		-2.3055		
SqrtWeek	-0.995		-3.8904		
Odds Rati	lo and 95% Odds Ra	tio Confidence Inter	vals		
			Bou	nds	
Parameter	Estimat				
intercept TxDrug	3.463	2 31.9181 2 1.0484	12.5921 0.3656	3.0067	
Tx*SWeek	-0.660		0.2944		
SgrtWeek	-0.995		0.2344		
Sdicweek	-0.338	5 0.3656	0.2230	0.6102	
SCIENCE CONSIST.	used 1.11 seconds	ST MARTER AND			

 \Rightarrow Supermix is FAST for a full-likelihood solution using bivariate numerical integration involving 100 quadrature points!


Empirical Bayes Estimates of Random Effects Select "Analysis" > "View Level-2 Bayes Results"

1103.00	1	-3.2254976	3.7395741	intercept	
1103.00	2	1.2792848	1.4021073	SqrtWeek	
1104.00	1	-2.2736372	4.1349330	intercept	
1104.00	2	-1.1217700	2.3578041	SqrtWeek	
1105.00	1	-2.3041210	4.1508661	intercept	
1105.00	2	-1.0449592	2.5057265	SqrtWeek	
1106.00	1	-5.6755917	2.9080543	intercept	
1106.00	2	0.5967187	1.9782031	SqrtWeek	
1107.00	1	0.4686978	6.2540200	intercept	
1107.00	2	0.5867829	2.3490230	SqrtWeek	
1108.00	1	0.7145179	6.2763860	intercept	
1108.00	2	1.2879341	1.9980584	SqrtWeek	
1109.00	1	-2.2736372	4.1349330	intercept	
1109.00	2	-1.1217700	2.3578041	SqrtWeek	
1110.00	1	0.7145179	6.2763860	intercept	
1110.00	2	1.2879341	1.9980584	SqrtWeek	
1111.00	1	0.9105483	5.7331291	intercept	
1111.00	2	-0.4895328	1.7508380	SqrtWeek	
1112.00	1	-1.4244996	5.3392174	intercept	
1112.00	2	-0.2818097	1.5569574	SqrtWeek	
1113.00	1	-1.7950498	4.4452986	intercept	
1113.00	2	0.1649245	1.7232928	SqrtWeek	
1114.00	1	0.9105483	5.7331291	intercept	
1114.00	2	-0.4895328	1.7508380	SqrtWeek	
1115.00	1	0.4686978	6.2540200	intercept	
1115.00	2	0.5867829	2.3490230	SqrtWeek	
1118.00	1	0.4951364	5.9589063	intercept	
1118.00	2	0.0586369	3.1455239	SqrtWeek	
1119.00	1	0.8682294	5.9061087	intercept	
1119.00	2	-0.4698596	1.7886167	SqrtWeek	

ID, random effect number, estimate, variance, name

Close output, select "File" > "Model-based Graphs" > "Equations"

List of Variables	D . F .	0		
Name	Predictor	Group	Mark	-
intercept			느	
TxDrug				
SqrtWeek	V			
Tx*SWeek				
Patient	-			
				Ţ
 Remaining pre 	dictors fixed at	0		·
			ans	÷
_	dictors fixed at		ans	-
	dictors fixed at ession model riable may be s	their me		-

Summary - mixed models for binary outcomes

- link functions: logistic, probit, log-log, complementary log-log
- multiple random effects (correlated or independent) for up to 3-level models
- fast full-likelihood estimation using adaptive Gauss-Hermite quadrature
- subject-specific and population-average estimates and inference
- discrete/grouped time survival analysis via person-period dataset
- Advanced > Level-2 (Co)variance Patterns > Unidimensional
 - varying ICC model for MZ/DZ twin pair data: create dummy variables MZ and DZ, specify both as random effects, select "Unidimensional"
 - Item-response theory (IRT) models: create indicator variables for items, specify all as random effects, select "Unidimensional"