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Why analyze as ordinal?

• Efficiency: Armstrong & Sloan (1989, Amer Jrn of Epid) and
Strömberg (1996, Amer Jrn of Epid) report efficiency losses
between 49% to 87% when dichotomizing an ordinal outcome
with five categories.

• Bias: continuous model can yield correlated residuals and
regressors when used for ordinal outcomes; continuous model
does not take into account the ceiling and floor effects of the
ordinal outcome. Results in biased estimates of regression
coefficients and is most critical when the ordinal variables is
highly skewed (see Bauer & Sterba, 2011, Psych Methods)

• Logic: continuous model can yield predicted values outside of
the range of the ordinal variable.
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Proportional Odds Model - McCullagh (1980)

log


P (Y ≤ c)

1− P (Y ≤ c)

 = γc − x′β

c = 1, . . . , C − 1 for the C categories of the ordinal outcome

x = vector of explanatory variables (plus the intercept)

γc = thresholds; reflect cumulative odds when x = 0 (for identification: γ1 = 0 or β0 = 0)

• positive association between x and Y is reflected by β > 0

• the effect of x is assumed to be the same for each cumulative
odds ratio

• odds that the response is greater than or equal to c (for fixed
c) is multiplied by eβ for every unit change in x:


1− P (Y ≤ c)

P (Y ≤ c)

 = e−γc × (eβ)x
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Ordinal Model for Dichotomous Response: same as it
ever was!

log

 P (Y = 0)

1− P (Y = 0)

 = 0− x′β

P (Y = 0)

1− P (Y = 0)
= exp(0− x′β)

1− P (Y = 0)

P (Y = 0)
= [exp(0− x′β)]

−1

1− P (Y = 0)

P (Y = 0)
= exp(x′β)

log

 P (Y = 1)

1− P (Y = 1)

 = x′β
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Ordinal Response and Threshold Concept

Continuous yi - unobservable latent variable - related to ordinal
response Yi via “threshold concept”

• threshold values γ1, γ2, . . . , γC−1 (γ0 = −∞ and γC =∞)

• C = number of ordered categories

Response occurs in category c, Yi = c if γc−1 < yi < γc
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The Threshold Concept in Practice

“How was your day?”
(what is your level of satisfaction today?)

• Satisfaction may be continuous, but we sometimes emit an
ordinal response:
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Model for Latent Continuous Responses
Consider the model with p covariates for the latent response
strength yi (i = 1, 2, . . . , N):

yi = x′iβ + εi

• probit: εi ∼ standard normal (mean=0, variance=1)

• logistic: εi ∼ standard logistic (mean=0, variance=π2/3)

⇒ β estimates from logistic regression are larger (in abs. value)
than from probit regression by approximately

√
π2/3 = 1.8

Underlying latent variable

• useful way of thinking of the problem

• not an essential assumption of the model
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Mixed-effects ordinal logistic regression model
(Hedeker & Gibbons, 1994, 1996)

• i = 1, . . . N level-2 units (clusters or subjects)

• j = 1, . . . , ni level-1 units (subjects or repeated observations)

• c = 1, 2, . . . , C response categories

• Yij = ordinal response of level-2 unit i and level-1 unit j

How was your day? (asked repeatedly each day for a week)
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Random-intercept Ordinal Logistic Regression
Model

λijc = log


Pijc

(1− Pijc)

 = γc − (x′ijβ + υ0i)

• Pijc = Pr (Yij ≤ c | υ ; γc,β,Συ) = 1
1+exp(−λijc)

• pijc = Pr (Yij = c | υ ; γc,β,Συ) = Pijc − Pijc−1

• C − 1 strictly increasing model thresholds γc

• xij = p× 1 covariate vector

• β = p× 1 fixed regression parameters

• υ0i = cluster effects distributed ∼ N(0, σ2
υ)
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Model for Latent Continuous Responses

Model with p covariates for the latent response strength yij:

yij = x′ijβ + υ0i + εij

where υ0i ∼ N(0, σ2
υ), and assuming

• εij ∼ standard normal (mean 0 and σ2 = 1) leads to
mixed-effects ordinal probit regression

• εij ∼ standard logistic (mean 0 and σ2 = π2/3) leads to
mixed-effects ordinal logistic regression
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Underlying latent variable

• not an essential assumption of the model

• useful for obtaining intra-class correlation (r)

r =
σ2
υ

σ2
υ + σ2

and for design effect (d)

d =
σ2
υ + σ2

σ2 = 1/(1− r)

ratio of actual variance to the variance that would be obtained
by simple random sampling (holding sample size constant)
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Scaling of regression coefficients

Fixed-effects model
β estimates from logistic regression are larger (in abs. value)
than from probit regression by approximately√√√√√√√√π

2/3

1
= 1.8

because

• V (y) = σ2 = π2/3 for logistic

• V (y) = σ2 = 1 for probit
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Mixed-effects model
β estimates from mixed-effects (random intercepts) model are
larger (in abs. value) than from fixed-effects model by
approximately

√
d =

√√√√√√√√σ
2
υ + σ2

σ2

because

• V (y) = σ2
υ + σ2 in mixed-effects (random intercepts) model

• V (y) = σ2 in fixed-effects model

• difference depends on size of random-effects variance σ2
υ

• more complex for models with multiple random effects
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Numerical Quadrature: integration over random effect
distribution

• method to numerically perform an integration

∫
υ f (yi | υ)g(υ)dυ ≈

Q∑
q=1

f (yi | Bq)A(Bq)

where Bq (q = 1, . . . , Q) are the quadrature nodes or points
A(Bq) (q = 1, . . . , Q) are the weights (sum = 1)

•More points, more accurate the approximation, but more time

• For standard normal distribution, Gauss-Hermite quadrature

• Yields a likelihood value that can be used for LR tests

• Full-likelihood approach found in STATA, SUPERMIX,
MIXOR, SAS PROC NLMIXED & GLIMMIX
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Other methods for integration of θ

Methods based on first- or second-order Taylor series expansions

•Marginal quasi-likelihood (MQL) involves expansion around
the fixed part of the model

• Penalized or predictive quasi-likelihood (PQL) also includes
the random part in its expansion

• fast, but doesn’t yield a likelihood for LR tests

• can yield downwardly biased estimates in certain situations (if
N and/or n is small, or ICC is high), especially for MQL

• Not available in Supermix, but other software programs use
these (e.g., SPSS, some SAS PROCs, MLwiN)
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Laplace approximation - Raudenbush et. al., (2000)

• a combination of a fully multivariate Taylor series expansion
and Laplace approximation

• fast and computationally accurate, though some bias for
variance parameters

• yields a likelihood for LR tests

• available in Stata, also in HLM (though not for all models)

Other methods

•Markov Chain Monte Carlo (MCMC) Bayesian approach (in
BUGS)

•Maximum Simulated Likelihood (in some STATA programs)
in econometric, transportation, political science literatures
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Effects of a School-based Intervention
The Television School and Family Smoking Prevention and
Cessation Project (Flay, et al., 1988); a subsample:

• sample - 1600 7th-graders - 135 classes - 28 schools

– 1 to 13 classes per school, 2 to 28 students per class

• outcome - knowledge of the effects of tobacco use

• timing - students tested at pre and post-intervention

• design - schools exposed to

– a social-resistance classroom curriculum (CC)

– a media (television) intervention (TV)

– CC combined with TV

– a no-treatment control group
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Main question of interest:

• Influence of the intervention on the tobacco health knowledge
scores (THKS) ?

Challenges in the analysis:

• outcome variable (THKS) is number correct of 7 items

• controlling for intra-school and intra-class variability

• potential explanatory variables are at different levels
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Tobacco and Health Knowledge Scale
Post-Intervention Scores - Frequencies (percentages)

subgroup THKS score
CC TV 0-1 2 3 4-7 total
no no 117 129 89 86 421

(27.8) (30.6) (21.1) (20.4)

no yes 110 105 91 110 416
(26.4) (25.2) (21.9) (26.4)

yes no 62 78 106 134 380
(16.3) (20.5) (27.9) (35.3)

yes yes 66 86 114 117 383
(17.2) (22.5) (29.8) (30.5)

total 355 398 400 447 1600
(22.2) (24.9) (25.0) (27.9)
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THKS Post-Intervention Scores - Proportions, Odds, Logits

subgroup proportions cumulative prop
CC TV 1 2 3 4 2-4 3-4 4
no no .278 .306 .211 .204 .722 .416 .204

no yes .264 .252 .219 .264 .736 .483 .264

yes no .163 .205 .279 .353 .837 .632 .353

yes yes .172 .225 .298 .305 .826 .603 .305

subgroup odds logits
CC TV 2-4 vs 1 3-4 vs 1-2 4 vs 1-3 2-4 vs 1 3-4 vs 1-2 4 vs 1-3
no no 2.598 .711 .257 .955 -.341 -1.360

no yes 2.782 .935 .359 1.023 -.067 -1.023

yes no 5.129 1.714 .545 1.635 .539 -.607

yes yes 4.803 1.520 .440 1.569 .419 -.821
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Observed Proportions by Group
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Within-Clusters / Between-Clusters components

Within-clusters model - level 1 (j = 1, . . . , ni subjects)

logitijc = b0ic

Between-clusters model - level 2 (i = 1, . . . , N clusters)

b0ic = γc − [β1CCi + β2TVi + β3(CCi × TVi) + υ0i]

υ0i ∼ NID(0, σ2
υ)
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γc = (C − 1) THKS logits for CC=no TV=no subgroup

β1 = logit diff. between CC=yes vs CC=no (for TV=no)

b0ic = γc − [(β1 + β3TVi)CCi + β2TVi + υ0i]

β2 = logit diff. between TV=yes vs TV=no (for CC=no)

b0ic = γc − [(β2 + β3CCi)TVi + β1CCi + υ0i]

β3 = difference in logit attributable to interaction

υ0i = random cluster deviation

note: interpretation depends on coding of variables, and βs are
adjusted for the cluster effects (cluster-specific effects)
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3-level model

Within-classrooms (and schools) model - level 1
(k = 1, . . . , nij students)

logitijkc = b0ijc

Between-classrooms (within-schools) model - level 2
(j = 1, . . . , ni classrooms)

b0ijc = b0ic + υ0ij

Between-schools model - level 3 (i = 1, . . . , N schools)

b0ic = γc − [β1CCi + β2TVi + β3(CCi × TVi) + υ0i]

υ0ij ∼ NID(0, σ2
υ(2)) and υ0i ∼ NID(0, σ2

υ(3))
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γc = (C-1) THKS logits for CC=no TV=no subgroup

β1 = logit diff. between CC=yes vs CC=no (for TV=no)

β2 = logit diff. between TV=yes vs TV=no (for CC=no)

β3 = difference in logit attributable to interaction

υ0ij = random classroom deviation

υ0i = random school deviation
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THKS Post-Int (ordinal) Scores - LR Estimates (std errs)
Multilevel

Fixed 2-level 3-level

cut 1 -.889 ∗∗∗ -.919 ∗∗∗ -.925 ∗∗∗

(.093) (.132) (.180)

cut 2 .275 ∗∗∗ .309 ∗∗ .302 ∗

(.090) (.130) (.178)

cut 3 1.366 ∗∗∗ 1.459 ∗∗∗ 1.452 ∗∗∗

(.096) (.136) (.182)

CC .777 ∗∗∗ .764 ∗∗∗ .823 ∗∗∗

(.128) (.186) (.254)

TV .224 ∗ .151 .236

(.125) (.183) (.249)

CC× TV -.372 ∗∗ -.269 -.431

(.180) (.263) (.356)

class var .260 .161

(.074) (.067)

school var .106

(.061)

-2 log L 4377.98 4345.36 4339.31

∗∗∗p < .01 ∗∗p < .05 ∗p < .10 (Wald-tests not done for vars)
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Calculation of ICC - 2 level model

r =
σ2
υ

σ2
υ + σ2

Random classrooms model

r =
.260

.260 + π2/3
= .073

⇒ 7.3% of the unexplained variation is at the classroom level
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Calculation of ICC - 3 level model

Level-3 (likeness of students in the same school)

r =
σ2
υ(3)

σ2
υ(3) + σ2

υ(2) + σ2 =
.106

.106 + .161 + π2/3
= .030

Level-2 (likeness of students in same classroom & school)

r =
σ2
υ(3) + σ2

υ(2)

σ2
υ(3) + σ2

υ(2) + σ2 =
.106 + .161

.106 + .161 + π2/3
= .075

Level-2 (likeness of classes in the same school)

r =
σ2
υ(3)

σ2
υ(3) + σ2

υ(2)
=

.106

.106 + .161
= .397

• r < .5 : the school level contributes slightly less to variability than the class level

• average classroom post THKS scores are moderately similar within schools
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Model fit of proportions: 3-level model
CC TV logistic Ψ(z) = 1

1+exp(−z) estimate observed

Probability of Category 1 response

0 0 Ψ(−.925/
√
d̂) .291 .278

0 1 Ψ((−.925 + .236)/
√
d̂) .247 .264

1 0 Ψ((−.925 + .823)/
√
d̂) .157 .163

1 1 Ψ((−.925− (.236 + .823− .431))/
√
d̂) .183 .172

Probability of Category 1 or 2 response

0 0 Ψ(.302/
√
d̂) .572 .584

0 1 Ψ((.302 + .236)/
√
d̂) .516 .517

1 0 Ψ((.302 + .823)/
√
d̂) .377 .368

1 1 Ψ((.302− (.236 + .823− .431))/
√
d̂) .422 .397

Probability of Category 1, 2, or 3 response

0 0 Ψ(1.453/
√
d̂) .802 .796

0 1 Ψ((1.453− .236)/
√
d̂) .763 .736

1 0 Ψ((1.453− .823)/
√
d̂) .647 .647

1 1 Ψ((1.453− (.236 + .823− .431))/
√
d̂) .689 .695

d = design effect = (σ2υ(3) + σ2υ(2) + σ2)/σ2 d̂ = (.106 + .161 + π2/3)/(π2/3)
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Model Fit of Observed Proportions: 3-level model
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Proportional and Non-proportional Odds

Proportional Odds model

log


P (Yij ≤ c)

1− P (Yij ≤ c)

 = γc −
[
x′ijβ + υ0i

]

with υ0i ∼ N(0, σ2
υ)

• relationship between the explanatory variables and the
cumulative logits does not depend on c

• effects of x variables DO NOT vary across the C − 1
cumulative logits
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Hedeker & Mermelstein (1998, Mult Behav Res) extension:

log


P (Yij ≤ c)

1− P (Yij ≤ c)

 = γc(0) −
[
u′ijγc + x′ijβ + υ0i

]

uij = h× 1 vector for the set of h covariates for which
proportional odds is not assumed

• effects of u variables DO vary across the C − 1 cumulative
logits

• more flexible model for ordinal response relations

• can’t estimate this model in most software programs, but is
available in Supermix
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Proportional Odds Assumption: covariate effects are the
same across all cumulative logits

Response
group Absent Mild Severe total

control 27 46 27 100

cumulative odds 27
73 = .37 73

27 = 2.7

logit -1 1
treatment 38 44 18 100

cumulative odds 38
62 = .61 82

18 = 4.6

logit -.5 1.5

⇒ group difference = .5 for both cumulative logits
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Non-Proportional Odds: covariate effects vary across the
cumulative logits

Response
group Absent Mild Severe total

control 27 46 27 100

cumulative odds 27
73 = .37 73

27 = 2.7

logit -1 1
treatment 28 60 12 100

cumulative odds 28
72 = .39 88

12 = 7.3

logit -.95 2

⇒ UNEQUAL group difference across cumulative logits
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TVSFP Study: Post-Intervention THKS (N = 1600)
Ordinal LR Estimates (se) - 3-level model

Proportional Non-Proportional
Odds Model Odds Model

2-4 vs 1 3,4 vs 1,2 4 vs 1-3
CC .823 .727 .928 .780

(.254) ( .281) (.262) (.272)

TV .236 .109 .281 .310
(.249) (.266) (.256) (.271)

CC by TV -.431 -.205 -.444 -.584
(.356) (.396) (.368) (.381)

−2 logL 4339.31 4332.42

• Proportional Odds accepted (χ2
6 = 4339.31− 4332.42 = 6.89)
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• Under SSI, Inc > “SuperMix (English)” or “SuperMix (English) Student”

• Under “File” click on “Open Spreadsheet”

• Open C:\SuperMixEn Examples\Workshop\Ordinal\tvsfpors.ss3
(or C:\SuperMixEn Student Examples\Workshop\Ordinal\tvsfpors.ss3)
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C:\SuperMixEn Examples\Workshop\Ordinal\tvsfpors.ss3
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Under “File” click on “Open Existing Model Setup”

Open C:\SuperMixEn Examples\Workshop\Ordinal\tvosc.mum
(or C:\SuperMixEn Student Examples\Workshop\Ordinal\tvosc.mum)

39



Note “Dependent Variable Type” is “ordered”
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For the moment, unselect PreTHKS as an explanatory variable
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Note “Optimization Method” is “adaptive quadrature”
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Under “Analysis” click on “Run”
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Empirical Bayes Estimates of Random Effects
Select “Analysis” > “View Level-2 Bayes Results”

School ID, Class ID, random effect number, estimate, variance, name

48



Empirical Bayes Estimates of Random Effects
Select “Analysis” > “View Level-3 Bayes Results”

School ID, random effect number, estimate, variance, name
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To estimate the non-proportional odds model, we’ll make some modifications
to the mum file. First, let’s save the mum file to a new name so that our
previous results are not written over.

Under “File” > “Save as” type in “TVOSCNP.mum”
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On the Configuration Card, modify the title
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On the Advanced Card, select “yes” for Explanatory Variable
Interactions
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Type in “3” for the Number of Interactions (all explanatory variables
will have non-proportional effects)
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If fewer than 3 is specified, then which explanatory variables have
non-proportional effects depends on the order that the variables were selected
on the Variables card

If 1 was specified for the number of interactions, then CC would have
non-proportional effects (but TV and CC*TV would have proportional
effects). Can unselect and reselect variables if different ordering is desired.
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• First set of estimates (under Estimated regression weights) are
for the effects on the first cumulative logit
CC = 0.7270, TV = 0.1085, CC*TV = -0.2049

• Next estimates (under Interactions of predictors with:
Threshold2) indicate how the effects are DIFFERENT on the
second cumulative logit, relative to the first
CC = 0.2013, TV = 0.1725, CC*TV = -0.2386

• Next estimates under Interactions of predictors with:
Threshold3) indicate how the effects are DIFFERENT on the
third cumulative logit, relative to the first
CC = 0.0531, TV = 0.2016, CC*TV = -0.3794

⇒ note that none of these six interactions are significant; in
agreement with overall LR test (χ2

6 = 4339.31− 4332.42 = 6.89)
⇒ proportional odds assumption not rejected
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Effects on the cumulative logits

• First cumulative logit:
CC = 0.7270, TV = 0.1085, CC*TV = -0.2049

• Second cumulative logit:
CC = 0.7270 + 0.2013 = 0.9283

TV = 0.1085 + 0.1725 = 0.2810

CC*TV = -0.2049 + (-0.2386) = -0.4435

• Third cumulative logit:
CC = 0.7270 + 0.0531 = 0.7801

TV = 0.1085 + 0.2016 = 0.3101

CC*TV = -0.2049 + (-0.3794) = -0.5843
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Linear Transforms

Fixed part of model:

λc = γ̂0c −
β̂1CC + β̂2TV + β̂3CC*TV

+ γ̂1cCC + γ̂2cTV + γ̂3cCC*TV]

cumulative logit
variable 1 vs 2,3,4 1,2 vs 3,4 1,2,3, vs 4

CC β̂1 β̂1 + γ̂12 β̂1 + γ̂13

TV β̂2 β̂2 + γ̂22 β̂2 + γ̂23

CC∗TV β̂3 β̂3 + γ̂32 β̂3 + γ̂33

H0 : β1 + γ12 = 0; CC effect is 0 on the 2nd cumulative logit

z =
β̂1 + γ̂12

SE(β̂1 + γ̂12)
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Linear Transforms: for estimate, std error, p-value β1 + γ12
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Linear Transforms: for estimate, std error, p-value β3 + γ33
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Summary: models for clustered ordinal data as developed as
models for continuous data

• Proportional odds models

– covariate effects are equal across C − 1 cumulative logits

• Non and partial proportional odds models

– covariate effects are all unequal across C − 1 cumulative
logits (non proportional odds); or some covariate effects are
unequal and some are equal across C − 1 cumulative logits
(partial proportional odds)

• Scaling models (Hedeker, Berbaum, & Mermelstein, 2006; Hedeker, Demirtas, &

Mermelstein, 2009; not yet in Supermix)

– Dispersion across the ordinal categories can depend on
covariates; examination of extreme response styles

• Can be recast as ordinal probit mixed models by selecting
probit link in Supermix
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