Mixed Models for Clustered Ordinal Outcomes

Don Hedeker Department of Public Health Sciences Biological Sciences Division University of Chicago

hedeker@uchicago.edu

Hedeker, D. (2014). Methods for multilevel ordinal data in prevention research. *Prevention Science*.

Hedeker, D. (2008). Multilevel models for ordinal and nominal variables. In J. de Leeuw & E. Meijer (Eds.), Handbook of Multilevel Analysis. Springer, New York.

Hedeker, D. (2005). Generalized linear mixed models. In B. Everitt & D. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. Wiley.

Why analyze as ordinal?

- Efficiency: Armstrong & Sloan (1989, Amer Jrn of Epid) and Strömberg (1996, Amer Jrn of Epid) report efficiency losses between 49% to 87% when dichotomizing an ordinal outcome with five categories.
- Bias: continuous model can yield correlated residuals and regressors when used for ordinal outcomes; continuous model does not take into account the ceiling and floor effects of the ordinal outcome. Results in biased estimates of regression coefficients and is most critical when the ordinal variables is highly skewed (see Bauer & Sterba, 2011, Psych Methods)
- Logic: continuous model can yield predicted values outside of the range of the ordinal variable.

Proportional Odds Model - McCullagh (1980)

$$\log\left[\frac{P(Y \le c)}{1 - P(Y \le c)}\right] = \gamma_c - \boldsymbol{x}'\boldsymbol{\beta}$$

 $c = 1, \ldots, C - 1$ for the C categories of the ordinal outcome

- \boldsymbol{x} = vector of explanatory variables (plus the intercept)
- γ_c = thresholds; reflect cumulative odds when $\boldsymbol{x} = 0$ (for identification: $\gamma_1 = 0$ or $\beta_0 = 0$)
- positive association between x and Y is reflected by $\beta > 0$
- \bullet the effect of x is assumed to be the same for each cumulative odds ratio
- odds that the response is greater than or equal to c (for fixed c) is multiplied by e^{β} for every unit change in x:

$$\left[\frac{1 - P(Y \le c)}{P(Y \le c)}\right] = e^{-\gamma_c} \times (e^\beta)^x$$

Ordinal Model for Dichotomous Response: same as it ever was!

$$\log\left[\frac{P(Y=0)}{1-P(Y=0)}\right] = 0 - \boldsymbol{x}'\boldsymbol{\beta}$$

$$\frac{P(Y=0)}{1-P(Y=0)} = \exp(0 - \boldsymbol{x}'\boldsymbol{\beta})$$

$$\frac{1 - P(Y = 0)}{P(Y = 0)} = \left[\exp(0 - x'\beta)\right]^{-1}$$

$$\frac{1 - P(Y = 0)}{P(Y = 0)} = \exp(\boldsymbol{x'}\boldsymbol{\beta})$$

$$\log\left[\frac{P(Y=1)}{1-P(Y=1)}\right] = \boldsymbol{x}'\boldsymbol{\beta}$$

Ordinal Response and Threshold Concept

Continuous y_i - unobservable latent variable - related to ordinal response Y_i via "threshold concept"

- threshold values $\gamma_1, \gamma_2, \ldots, \gamma_{C-1}$ ($\gamma_0 = -\infty$ and $\gamma_C = \infty$)
- C = number of ordered categories

Response occurs in category c, $Y_i = c$ if $\gamma_{c-1} < y_i < \gamma_c$

The Threshold Concept in Practice

"How was your day?" (what is your level of satisfaction today?)

• Satisfaction may be continuous, but we sometimes emit an ordinal response:

Model for Latent Continuous Responses

Consider the model with p covariates for the latent response strength y_i (i = 1, 2, ..., N):

$$y_i = \boldsymbol{x}'_i \boldsymbol{\beta} + \varepsilon_i$$

- probit: $\varepsilon_i \sim \text{standard normal (mean=0, variance=1)}$
- logistic: $\varepsilon_i \sim \text{standard logistic (mean=0, variance} = \pi^2/3)$

 $\Rightarrow \beta$ estimates from logistic regression are larger (in abs. value) than from probit regression by approximately $\sqrt{\pi^2/3} = 1.8$

Underlying latent variable

- useful way of thinking of the problem
- \bullet not an essential assumption of the model

Mixed-effects ordinal logistic regression model (Hedeker & Gibbons, 1994, 1996)

- i = 1, ... N level-2 units (clusters or subjects)
- $j = 1, ..., n_i$ level-1 units (subjects or repeated observations)
- $c = 1, 2, \ldots, C$ response categories
- Y_{ij} = ordinal response of level-2 unit *i* and level-1 unit *j*

How was your day? (asked repeatedly each day for a week)

Random-intercept Ordinal Logistic Regression Model

$$\lambda_{ijc} = \log \left[\frac{P_{ijc}}{(1 - P_{ijc})} \right] = \gamma_c - (\boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_{0i})$$

•
$$P_{ijc} = \Pr\left(Y_{ij} \leq c \mid \boldsymbol{v}; \gamma_c, \boldsymbol{\beta}, \boldsymbol{\Sigma}_{\upsilon}\right) = \frac{1}{1 + \exp(-\lambda_{ijc})}$$

•
$$p_{ijc} = \Pr(Y_{ij} = c \mid \boldsymbol{v}; \gamma_c, \boldsymbol{\beta}, \boldsymbol{\Sigma}_v) = P_{ijc} - P_{ijc-1}$$

- C-1 strictly increasing model thresholds γ_c
- $\boldsymbol{x}_{ij} = p \times 1$ covariate vector
- $\beta = p \times 1$ fixed regression parameters
- v_{0i} = cluster effects distributed ~ $N(0, \sigma_v^2)$

Model for Latent Continuous Responses

Model with p covariates for the latent response strength y_{ij} :

$$y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_{0i} + \varepsilon_{ij}$$

where $v_{0i} \sim N(0, \sigma_v^2)$, and assuming

- $\varepsilon_{ij} \sim$ standard normal (mean 0 and $\sigma^2 = 1$) leads to mixed-effects ordinal probit regression
- $\varepsilon_{ij} \sim$ standard logistic (mean 0 and $\sigma^2 = \pi^2/3$) leads to mixed-effects ordinal logistic regression

Underlying latent variable

- not an essential assumption of the model
- useful for obtaining intra-class correlation (r)

$$r = \frac{\sigma_v^2}{\sigma_v^2 + \sigma^2}$$

and for design effect (d)

$$d = \frac{\sigma_v^2 + \sigma^2}{\sigma^2} = 1/(1-r)$$

ratio of actual variance to the variance that would be obtained by simple random sampling (holding sample size constant)

Scaling of regression coefficients

Fixed-effects model

 $\pmb{\beta}$ estimates from logistic regression are larger (in abs. value) than from probit regression by approximately

$$\sqrt{\frac{\pi^2/3}{1}} = 1.8$$

because

- $V(y) = \sigma^2 = \pi^2/3$ for logistic
- $V(y) = \sigma^2 = 1$ for probit

$\begin{array}{l} \textit{Mixed-effects model} \\ \pmb{\beta} \text{ estimates from mixed-effects (random intercepts) model are} \\ \text{larger (in abs. value) than from fixed-effects model by} \\ \text{approximately} \end{array}$

$$\sqrt{d} = \sqrt{\frac{\sigma_v^2 + \sigma^2}{\sigma^2}}$$

because

- $V(y) = \sigma_v^2 + \sigma^2$ in mixed-effects (random intercepts) model
- $V(y) = \sigma^2$ in fixed-effects model
- difference depends on size of random-effects variance σ_v^2
- more complex for models with multiple random effects

Numerical Quadrature: integration over random effect distribution

• method to numerically perform an integration

$$\int_{\mathcal{V}} f(\mathbf{y}_i \mid \boldsymbol{\upsilon}) g(\boldsymbol{\upsilon}) d\boldsymbol{\upsilon} \ \approx \ \sum_{q=1}^{Q} f(\mathbf{y}_i \mid B_q) A(B_q)$$

where B_q (q = 1, ..., Q) are the quadrature nodes or points $A(B_q)$ (q = 1, ..., Q) are the weights (sum = 1)

- More points, more accurate the approximation, but more time
- For standard normal distribution, Gauss-Hermite quadrature
- Yields a likelihood value that can be used for LR tests
- Full-likelihood approach found in STATA, SUPERMIX, MIXOR, SAS PROC NLMIXED & GLIMMIX

Other methods for integration of θ

Methods based on first- or second-order Taylor series expansions

- Marginal quasi-likelihood (MQL) involves expansion around the fixed part of the model
- Penalized or predictive quasi-likelihood (PQL) also includes the random part in its expansion
- fast, but doesn't yield a likelihood for LR tests
- can yield downwardly biased estimates in certain situations (if N and/or n is small, or ICC is high), especially for MQL
- Not available in Supermix, but other software programs use these (e.g., SPSS, some SAS PROCs, MLwiN)

Laplace approximation - Raudenbush et. al., (2000)

- a combination of a fully multivariate Taylor series expansion and Laplace approximation
- fast and computationally accurate, though some bias for variance parameters
- yields a likelihood for LR tests
- available in Stata, also in HLM (though not for all models)

Other methods

- Markov Chain Monte Carlo (MCMC) Bayesian approach (in BUGS)
- Maximum Simulated Likelihood (in some STATA programs) in econometric, transportation, political science literatures

Effects of a School-based Intervention

The Television School and Family Smoking Prevention and Cessation Project (Flay, *et al.*, 1988); a subsample:

- \bullet sample 1600 7th-graders 135 classes 28 schools
 - -1 to 13 classes per school, 2 to 28 students per class
- *outcome* knowledge of the effects of tobacco use
- $\bullet\ timing$ students tested at pre and post-intervention
- design schools exposed to
 - a social-resistance classroom curriculum (CC)
 - -a media (television) intervention (TV)
 - $-\operatorname{CC}$ combined with TV
 - $-\,\mathrm{a}$ no-treatment control group

Main question of interest:

• Influence of the intervention on the tobacco health knowledge scores (THKS) ?

Challenges in the analysis:

- outcome variable (THKS) is number correct of 7 items
- controlling for intra-school and intra-class variability
- potential explanatory variables are at different levels

	Γ	Tobacc	o and l	Health	Knowle	edge Sca	ale
Post	t-Inte	ervent	ion Scc	ores - Fi	requenc	eies (per	rcentages)
	sube	group		THKS	S score		
	CC	ΤV	0-1	2	3	4-7	total
	no	no	117	129	89	86	421
			(27.8)	(30.6)	(21.1)	(20.4)	
	no	yes	110	105	91	110	416
			(26.4)	(25.2)	(21.9)	(26.4)	
	yes	no	62	78	106	134	380
	Ū		(16.3)	(20.5)	(27.9)	(35.3)	
	yes	yes	66	86	114	117	383
	Ũ	J. J	(17.2)	(22.5)	(29.8)	(30.5)	
		total	355	398	400	447	1600
			(22.2)	(24.9)	(25.0)	(27.9)	

THKS Post-Intervention Scores - Proportions, Odds, Logits

subg	roup	ſ	oropo	rtion	S	cum	ulativ	ve prop
CC	ΤV	1	2	3	4	2-4	3-4	4
no	no	.278	.306	.211	.204	.722	.416	.204
no	yes	.264	.252	.219	.264	.736	.483	.264
yes	no	.163	.205	.279	.353	.837	.632	.353
yes	yes	.172	.225	.298	.305	.826	.603	.305

subg	proup		odds			logits	
CC	ΤV	2-4 vs 1	3-4 vs 1-2	4 vs 1-3	2-4 vs 1	3-4 vs 1-2	4 vs 1-3
no	no	2.598	.711	.257	.955	341	-1.360
no	yes	2.782	.935	.359	1.023	067	-1.023
yes	no	5.129	1.714	.545	1.635	.539	607
yes	yes	4.803	1.520	.440	1.569	.419	821

Observed Proportions by Group

Post THKS scores by Group

Within-Clusters / Between-Clusters components

<u>Within-clusters model</u> - level 1 $(j = 1, ..., n_i \text{ subjects})$ $logit_{ijc} = b_{0ic}$

<u>Between-clusters model</u> - level 2 (i = 1, ..., N clusters) $b_{0ic} = \gamma_c - [\beta_1 C C_i + \beta_2 T V_i + \beta_3 (C C_i \times T V_i) + v_{0i}]$ $v_{0i} \sim \mathcal{NID}(0, \sigma_v^2)$

$$\begin{split} \gamma_c &= (C-1) \text{ THKS logits for CC=no TV=no subgroup} \\ \beta_1 &= \text{logit diff. between CC=yes vs CC=no (for TV=no)} \\ b_{0ic} &= \gamma_c - [(\beta_1 + \beta_3 TV_i)CC_i + \beta_2 TV_i + \upsilon_{0i}] \\ \beta_2 &= \text{logit diff. between TV=yes vs TV=no (for CC=no)} \\ b_{0ic} &= \gamma_c - [(\beta_2 + \beta_3 CC_i)TV_i + \beta_1 CC_i + \upsilon_{0i}] \\ \beta_3 &= \text{difference in logit attributable to interaction} \\ \upsilon_{0i} &= \text{random cluster deviation} \end{split}$$

note: interpretation depends on coding of variables, and β s are adjusted for the cluster effects (cluster-specific effects)

3-level model

 $\frac{Within-classrooms (and schools) model}{(k = 1, \dots, n_{ij} \text{ students})} - level 1$

$$logit_{ijkc} = b_{0ijc}$$

 $\frac{Between-classrooms (within-schools) model}{(j=1,\ldots,n_i \text{ classrooms})} - level 2$

$$b_{0ijc} = b_{0ic} + v_{0ij}$$

<u>Between-schools model</u> - level 3 (i = 1, ..., N schools)

 $b_{0ic} = \gamma_c - \left[\beta_1 C C_i + \beta_2 T V_i + \beta_3 (C C_i \times T V_i) + v_{0i}\right]$

$$v_{0ij} \sim \mathcal{NID}(0, \sigma_{v(2)}^2)$$
 and $v_{0i} \sim \mathcal{NID}(0, \sigma_{v(3)}^2)$

$$\gamma_c$$
 = (C-1) THKS logits for CC=no TV=no subgroup

$$\beta_1$$
 = logit diff. between CC=yes vs CC=no (for TV=no)

$$\beta_2$$
 = logit diff. between TV=yes vs TV=no (for CC=no)

$$\beta_3$$
 = difference in logit attributable to interaction

$$v_{0ij}$$
 = random classroom deviation

$$v_{0i}$$
 = random school deviation

			Multilevel			
	Fixe	ed	2-lei	vel	6	<i>B-level</i>
cut 1	889	***	919	***	925	***
	(.093)		(.132)		(.180)	
$\operatorname{cut} 2$.275	***	.309	**	.302	*
	(.090)		(.130)		(.178)	
cut 3	1.366	***	1.459	***	1.452	***
	(.096)		(.136)		(.182)	
CC	.777	***	.764	***	.823	***
	(.128)		(.186)		(.254)	
ΤV	.224	*	.151		.236	
	(.125)		(.183)		(.249)	
$CC \times TV$	372	**	269		431	
	(.180)		(.263)		(.356)	
.1			900		101	
class var			.260		.101	
1 1			(.074)		(.067)	
school var					.106	
					(.061)	
-2 log L	4377.	98	4345.	36	4	339.31
$^{***}p < .01$ **	p < .05	*p <	.10 (Wa	ld-te	sts not d	one for vars)

THKS Post-Int (ordinal) Scores - LR Estimates (std errs)

Calculation of ICC - 2 level model

$$r = \frac{\sigma_{\upsilon}^2}{\sigma_{\upsilon}^2 + \sigma^2}$$

Random classrooms model

$$r = \frac{.260}{.260 + \pi^2/3} = .073$$

 \Rightarrow 7.3% of the unexplained variation is at the classroom level

Calculation of ICC - 3 level model

Level-3 (likeness of students in the same school)

$$r = \frac{\sigma_{\upsilon(3)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2 + \sigma^2} = \frac{.106}{.106 + .161 + \pi^2/3} = .030$$

Level-2 (likeness of students in same classroom & school)

$$r = \frac{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2 + \sigma^2} = \frac{.106 + .161}{.106 + .161 + \pi^2/3} = .075$$

Level-2 (likeness of classes in the same school)

$$r = \frac{\sigma_{\upsilon(3)}^2}{\sigma_{\upsilon(3)}^2 + \sigma_{\upsilon(2)}^2} = \frac{.106}{.106 + .161} = .397$$

r < .5 : the school level contributes slightly less to variability than the class level
average classroom post THKS scores are moderately similar within schools

		Model fit of proportions: 3-level model		
CC	ΤV	logistic $\Psi(z) = \frac{1}{1 + \exp(-z)}$	estimate	observed
		Probability of Category 1 response		
0	0	$\Psi(925/\sqrt{\hat{d}})$.291	.278
0	1	$\Psi((925 + .236)/\sqrt{\hat{d}})$.247	.264
1	0	$\Psi((925 + .823)/\sqrt{\hat{d}})$.157	.163
1	1	$\Psi((925 - (.236 + .823431))/\sqrt{\hat{d}})$.183	.172
		Probability of Category 1 or 2 response		
0	0	$\Psi(.302/\sqrt{\hat{d}})$.572	.584
0	1	$\Psi((.302 + .236)/\sqrt{\hat{d}})$.516	.517
1	0	$\Psi((.302 + .823)/\sqrt{\hat{d}})$.377	.368
1	1	$\Psi((.302 - (.236 + .823431))/\sqrt{\hat{d}})$.422	.397
		Probability of Category 1, 2, or 3 response		
0	0	$\Psi(1.453/\sqrt{\hat{d}})$.802	.796
0	1	$\Psi((1.453236)/\sqrt{\hat{d}})$.763	.736
1	0	$\Psi((1.453823)/\sqrt{\hat{d}})$.647	.647
1	1	$\Psi((1.453 - (.236 + .823431))/\sqrt{\hat{d}})$.689	.695

 $d = \text{design effect} = (\sigma_{v(3)}^2 + \sigma_{v(2)}^2 + \sigma^2) / \sigma^2 \qquad \hat{d} = (.106 + .161 + \pi^2/3) / (\pi^2/3)$

Proportional and Non-proportional Odds

Proportional Odds model

$$\log \left[\frac{P(Y_{ij} \le c)}{1 - P(Y_{ij} \le c)} \right] = \gamma_c - \left[\mathbf{x}'_{ij} \mathbf{\beta} + \upsilon_{0i} \right]$$

with $\upsilon_{0i} \sim N(0, \sigma_v^2)$

- \bullet relationship between the explanatory variables and the cumulative logits does not depend on c
- \bullet effects of \boldsymbol{x} variables DO NOT vary across the C-1 cumulative logits

Hedeker & Mermelstein (1998, Mult Behav Res) extension: $\log \left[\frac{P(Y_{ij} \le c)}{1 - P(Y_{ij} \le c)} \right] = \gamma_{c(0)} - \left[\boldsymbol{u}'_{ij} \boldsymbol{\gamma}_c + \boldsymbol{x}'_{ij} \boldsymbol{\beta} + v_{0i} \right]$

 $\boldsymbol{u}_{ij} = h \times 1$ vector for the set of h covariates for which proportional odds is not assumed

- \bullet effects of \boldsymbol{u} variables DO vary across the C-1 cumulative logits
- more flexible model for ordinal response relations
- can't estimate this model in most software programs, but is available in Supermix

Proportional Odds Assumption: covariate effects are the same across all cumulative logits

		Response		
group	Absent	Mild	Severe	total
control	27	46	27	100
cumulative odds	$\frac{27}{73} = .37$	$\frac{73}{27} = 2.7$		
logit	-1	1		
treatment	38	44	18	100
cumulative odds	$\frac{38}{62} = .61$	$\frac{82}{18} = 4.6$		
logit	5	1.5		

 \Rightarrow group difference = .5 for both cumulative logits

Non-Proportional Odds: covariate effects vary across the cumulative logits

		Response		
group	Absent	Mild	Severe	total
control	27	46	27	100
cumulative odds	$\frac{27}{73} = .37$	$\frac{73}{27} = 2.7$		
logit	-1	1		
treatment	28	60	12	100
cumulative odds	$\frac{28}{72} = .39$	$\frac{88}{12} = 7.3$		
logit	95	2		

 \Rightarrow UNEQUAL group difference across cumulative logits

TVSFP Stu	udy: Post-Inte	ervention	THKS $(N$	= 1600)					
Ordin	Ordinal LR Estimates (se) - 3-level model								
	Proportional	Nor	n-Proportio	onal					
	Odds Model	(Odds Mode	el					
		2-4 vs 1	3,4 vs 1,2	4 vs 1-3					
CC	.823	.727	.928	.780					
	(.254)	(.281)	(.262)	(.272)					
TV	.236	.109	.281	.310					
	(.249)	(.266)	(.256)	(.271)					
CC by TV	431	205	444	584					
U	(.356)	(.396)	(.368)	(.381)					
$-2\log L$	4339.31		4332.42						

• Proportional Odds accepted ($\chi_6^2 = 4339.31 - 4332.42 = 6.89$)

• Under SSI, Inc > "SuperMix (English)" or "SuperMix (English) Student"

• Under "File" click on "Open Spreadsheet"

File Help	
New Spreadsheet	Ctrl+N
Open Spreadsheet	Ctrl+O
Import Data File	Ctrl+I

• Open C:\SuperMixEn Examples\Workshop\Ordinal\tvsfpors.ss3 (or C:\SuperMixEn Student Examples\Workshop\Ordinal\tvsfpors.ss3)

Look in: Dor	dinal	- +	• 🗈 💣 🎫	
Name	*	D	ate modified	Т
nih_ord.ss3		5,	/18/2007 12:24 AM	S
SDHOUSE.st	s3	5,	/18/2007 12:25 AM	S
tvsfpors.ss3		5,	/18/2007 12:15 AM	S
4	m			+
File name: tv	sfpors.ss3		Open	
				1

$C:\SuperMixEn\ Examples\Workshop\Ordinal\tvsfpors.ss3$

tvst	porsissa								
	(A)_School	(B)_Class	(C)_THKSor	(D)_THKSbi	(E)_Intropt	(F)_PreTHK	(G)_CC	(H)_TV	(I)_CC*TV
1	403	403101	3	1	1	2	1	0	(
2	403	403101	4	1	1	4	1	0	(
3	403	403101	3	1	1	4	1	0	(
4	403	403101	4	1	1	3	1	0	(
5	403	403101	4	1	1	3	1	0	
6	403	403101	3	1	1	4	1	0	(
7	403	403101	2	0	1	2	1	0	(
8	403	403101	4	1	1	4	1	0	(
9	403	403101	4	1	1	5	1	0	. (
10	403	403101	4	1	1	3	1	0	(
11	403	403101	3	1	1	3	1	0	(
12	403	403101	4	1	1	3	1	0	. (
13	403	403101	3	1	1	1	1	0	(
14	403	403101	4	1	1	2	1	0	(
15	403	403101	2	0	1	2	1	0	(
16	403	403101	4	1	1	1	1	0	(
17	403	403101	4	1	1	4	1	0	(
18	403	403101	3	1	1	3	1	0	(
19	403	403101	3	1	1	0	1	0	(
20	403	403101	4	1	1	3	1	0	(
21	403	403102	2	0	1	0	1	0	(
22	403	403102	4	1	1	1	1	0	(
23	403	403102	3	1	1	5	1	0	(
24	404	404101	3	1	1	1	1	1	
25	404	404101	4	1	1	2	1	1	
26	404	404101	2	0	1	4	1	1	
27	404	404101	3	1	1	3	1	1	
28	404	404101	2	0	1	1	1	1	-
	1					l d	-		1.1

Under "File" click on "Open Existing Model Setup"

File	Edit Window Help	
	New Project	Ctrl+N
	Import Data File	Ctrl+I
	Close	
	New Model Setup	Ctrl+W
	Open Existing Model Setup	Ctrl+E
	New Syntax File	
	Open Syntax File	
	Open Text File	
	Data-based Graphs	•
	Open Graph	Ctrl+G
	Save	Ctrl+S
	Save As	
	Exit	

Open C:\SuperMixEn Examples\Workshop\Ordinal\tvosc.mum (or C:\SuperMixEn Student Examples\Workshop\Ordinal\tvosc.mum)

rganize 🔻 🛛 New fold	der			•
Favorites	Name	Date modified	Туре	Size
📃 Desktop	SCHIZo2.mum	1/5/2015 3:13 PM	MUM File	3 KB
📕 Downloads	SCHIZo2NP.mum	1/5/2015 3:22 PM	MUM File	3 KB
🔠 Recent Places	SDO1.mum	5/21/2007 4:55 PM	MUM File	5 KB
	SDO2.mum	1/5/2015 3:28 PM	MUM File	3 KB
🗧 Libraries 🛛 🗏	TVOC.mum	5/18/2007 12:15 AM	MUM File	5 KB
Documents	TVOS.mum	5/18/2007 12:16 AM	MUM File	5 KB
J Music	TVOSC.mum	5/18/2007 12:16 AM	MUM File	5 KB
Pictures	Ci-			
Videos				
Computer				
cocal Disk (C:)				
T groups (//phshie +				
File	name: TVOSC mum		 Mixed Un 	Models (*.mum)

Note "Dependent Variable Type" is "ordered"

🛃 Model Setup: TVOSC.mu	ım				- • ×
<u>Configuration</u> ∐ ⊻ariables <u>S</u>	arting V	/alues <u>P</u> attern:	s <u>A</u> dva	nced Linear Transforms	<u> </u>
Title 1: TVSFP Ordinal					
Title 2: Students in Classro	oms in S	Schools			1
Dependent Variable Type:	ordere	d	-	Level-2 IDs:	Class 🗾
Dependent Variable:	THKS	ord	•	Level-3 IDs:	School 🗾
Categories:		Value	_	Write Bayes Estimates:	no 💌
	1 2	2		Convergence Criterion:	0.001
	3	3		Number of Iterations:	100
	1. 6 . 0				
Missing Values Present:	false	_	•	Perform Crosstab	ulation: 🔽 💌
				Output Type:	standard 💽
Select the form of	the dep	pendent variable	. The op	tions on the screens will c	hange as required.
1					

For the moment, unselect $\ensuremath{\texttt{PreTHKS}}$ as an explanatory variable

Available	E 2 3	Explanatory Variables E L-2 Random Effects 2
ichool		
llass		TV
HKSord		
HKSbin		
ntropt		
PreTHKS	ГГГ	
)C		
¥		
C*TV		Include Intercept
		L-3 Random Effects 3
		✓ Include Intercept

Note "Optimization Method" is "adaptive quadrature"

Model Setup: TVOSC.mum	
Configuration Variables Starting Values Patterns Adv	vanced Linear Transforms
General Settings Unit Weighting: equal	Explanatory Variable Interactions
Optimization Method: adaptive quadrature Number of Quadrature Points: 15 Ordered Dependent Variable Settings	
Function Model: logistic	Right-Censoring: none
Level-2 Random Thresholds: no	Model Terms: subtract
Use the arrow keys or click on the desired tab t	o select the category of interest for the model.

Under "Analysis" click on "Run"

TVOSC.out

٠ | TVSFP Ordinal | Students in Classrooms in Schools | 0------Model and Data Descriptions Ε Sampling Distribution = Multinomial Link Function = Cumulative Logit Number of Level-3 Units = 28 Number of Level-2 Units = 135 Number of Level-1 Units = 1600Number of Level-2 Units per Level-3 Unit = 2 3 1 6 2 4 3 6 2 2 3 3 4 4 2 6 5 5 7 11 7 4 8 4 7 4 7 13 Number of level-1 units for the first (level-3, level-2) unit combination = 20 3 | Descriptive statistics for all the variables in the model | 0------Standard Variable Minimum Maximum Mean Deviation _____ --------------THKSord1 0.0000 1.0000 0.2219 0.4156 THKSord2 0.0000 1.0000 0.2487 0.4324 THKSord3 0.0000 1.0000 0.2500 0.4331 THKSord4 0.0000 1.0000 0.2794 0.4488 0.0000 1.0000 0.4769 0.4996 CC TV 0.0000 1.0000 0.4994 0.5002 CC*TV 0.0000 1.0000 0.2394 0.4268 Save As... Close

TVOSC.out

0		0			
Number of quadrat	ture points =	15			
Number of free pa	arameters =	8			
Number of iterat:	ions used =	13			
-21nL (deviance :	statistic) =	4339.31017			
Akaike Informatio	on Criterion	4355.31017			
Schwarz Criterio	n	4398.33224			
	Estimated reg	ression weights			
		Standard			
Parameter	Estimate	Error	z Value	P Value	
Threshold ¹	-0.9254	0 1700	-5 1454	0.0000	
Threshold?	0.2019	0.1793	1 69/6	0.0000	
Threshold2	1 4529	0.1/62	7 0752	0.0901	
inresnoids	1.4525	0.1622	7.9/53	0.0000	
	0.0232	0.2537	3.2453	0.0012	
IV CONTIN	0.2357	0.2485	0.9482	0.3430	
Odds Ratio an	nd 95% Odds Ratio	Confidence Interva	ls		
			Bou	nds	
Parameter	Estimate	Odds Ratio	Lower	Upper	
	States and				
Threshold1	-0.9254	0.3964	0.2786	0.5639	
Threshold2	0.3019	1.3524	0.9538	1.9176	
Threshold3	1.4529	4.2754	2.9916	6.1100	
CC	0.8232	2.2778	1.3855	3.7449	
TV	0.2357	1.2657	0.7777	2.0601	
CC*TV	-0.4310	0.6499	0.3233	1.3064	
		200 a C			

TVOSC.out - C X Estimated level 2 variances and covariances ×. Standard Estimate Error Parameter z Value P Value _____ _____ _____ ---------____ 0.1612 0.0665 2.4233 0.0154 intercept/intercept Level 2 covariance matrix intercept intercept 0.161160 Level 2 correlation matrix intercept 1.000000 intercept Estimated level 3 variances and covariances Standard Parameter Estimate Error z Value P Value H _____ _____ _____ _____ ___ ----0.1057 0.0605 1.7463 0.0808 intercept/intercept Level 3 covariance matrix intercept intercept 0.105677 ÷ 4 III F. Save As... Close

	Population Avera	age Estimates			
		Standard			
Parameter	Estimate	Error	z Value	P Value	
Threshold1	-0.8733	0.1707	-5.1164	0.0000	
Threshold2	0.3152	0.1684	1.8717	0.0612	
Threshold3	1.4505	0.1720	8.4308	0.0000	
CC	0.7876	0.2430	3.2406	0.0012	
TV	0.2241	0.2364	0.9482	0.3430	
CC*TV	-0.4122	0.3410	-1.2089	0.2267	
Odds Ratio an	nd 95% Odds Ratio Co	onfidence Interva	ls		
Odds Ratio an	nd 95% Odds Ratio Co	onfidence Interva	ls Bour	nds	
Odds Ratio an Parameter	nd 95% Odds Ratio Co Estimate	onfidence Interva Odds Ratio	ls Bour Lower	nds Upper	
Odds Ratio an Parameter 	nd 95% Odds Ratio Co Estimate	Odds Ratio	ls Bour Lower 	nds Upper	
Odds Ratio an Parameter Threshold1 Threshold2	nd 95% Odds Ratio Co Estimate -0.8733 0 3152	Odds Ratio 	Bour Lower 0.2988 0.9852	nds Upper 0.5835 1 9065	
Odds Ratio an Parameter Threshold1 Threshold2 Threshold3	nd 95% Odds Ratio Co Estimate -0.8733 0.3152 1 4505	Odds Ratio 	Bour Lower 0.2988 0.9852 3.0442	nds Upper 0.5835 1.9065 5.9754	
Odds Ratio an Parameter Threshold1 Threshold2 Threshold3 CC	nd 95% Odds Ratio Co Estimate -0.8733 0.3152 1.4505 0 7876	Odds Ratio 	Bour Lower 0.2988 0.9852 3.0442 1.3651	nds Upper 0.5835 1.9065 5.9754 3.5393	
Odds Ratio an Parameter Threshold1 Threshold2 Threshold3 CC TV	nd 95% Odds Ratio Co Estimate -0.8733 0.3152 1.4505 0.7876 0.2241	Odds Ratio 0.4176 1.3705 4.2650 2.1981 1.2512	Bour Lower 0.2988 0.9852 3.0442 1.3651 0.7873	nds Upper 0.5835 1.9065 5.9754 3.5393 1.9886	
Odds Ratio an Parameter Threshold1 Threshold2 Threshold3 CC TV CC*TV	nd 95% Odds Ratio Co Estimate -0.8733 0.3152 1.4505 0.7876 0.2241 -0.4122	Odds Ratio 	Bour Lower 0.2988 0.9852 3.0442 1.3651 0.7873 0.3394	nds Upper 0.5835 1.9065 5.9754 3.5393 1.9886 1.2919	
Odds Ratio an Parameter Threshold1 Threshold2 Threshold3 CC TV CC*TV	nd 95% Odds Ratio Co Estimate -0.8733 0.3152 1.4505 0.7876 0.2241 -0.4122	Odds Ratio 0.4176 1.3705 4.2650 2.1981 1.2512 0.6622	Bour Lower 0.2988 0.9852 3.0442 1.3651 0.7873 0.3394	nds Upper 0.5835 1.9065 5.9754 3.5393 1.9886 1.2919	
Odds Ratio an Parameter Threshold1 Threshold2 Threshold3 CC TV CC*TV	nd 95% Odds Ratio Co Estimate -0.8733 0.3152 1.4505 0.7876 0.2241 -0.4122	Odds Ratio 0.4176 1.3705 4.2650 2.1981 1.2512 0.6622	Bour Lower 0.2988 0.9852 3.0442 1.3651 0.7873 0.3394	nds Upper 0.5835 1.9065 5.9754 3.5393 1.9886 1.2919	

Empirical Bayes Estimates of Random Effects Select "Analysis" > "View Level-2 Bayes Results"

403.00	403101.00	1	0.3830596	0.0992984	intercept
403.00	403102.00	1	-0.0060966	0.1403538	intercept
404.00	404101.00	1	0.0452929	0.1102310	intercept
404.00	404102.00	1	0.0372225	0.1190588	intercept
404.00	404103.00	1	-0.0591144	0.1246955	intercept
193.00	193101.00	1	0.0923271	0.0934758	intercept
194.00	194101.00	1	-0.1580723	0.1053307	intercept
194.00	194102.00	1	0.1679984	0.1089083	intercept
194.00	194103.00	1	-0.4208806	0.1051123	intercept
194.00	194104.00	1	0.1117383	0.1123845	intercept
194.00	194105.00	1	0.0118202	0.1057007	intercept
194.00	194106.00	1	0.4528521	0.1175246	intercept
196.00	196101.00	1	0.0723459	0.0958842	intercept
196.00	196102.00	1	0.2335189	0.1138158	intercept
197.00	197101.00	1	0.0573797	0.1000044	intercept
197.00	197102.00	1	-0.2680330	0.1012104	intercept
197.00	197103.00	1	0.1732199	0.1478868	intercept
197.00	197104.00	1	0.0440951	0.1369383	intercept
198.00	198101.00	1	0.3140455	0.0995627	intercept
198.00	198102.00	1	-0.1583028	0.1003959	intercept
198.00	198103.00	1	-0.3119070	0.0997619	intercept
199.00	199101.00	1	0.0007413	0.1037813	intercept
199.00	199102.00	1	-0.2126358	0.1509178	intercept
199.00	199103.00	1	0.0228959	0.1043473	intercept
199.00	199104.00	1	-0.2513062	0.1058030	intercept
199.00	199105.00	1	-0.1097849	0.1559823	intercept
199.00	199106.00	1	0.1589114	0.1087618	intercept
401.00	401101.00	1	0.1201337	0.0976987	intercept
401.00	401102.00	1	0.1766444	0.0946616	intercept
402.00	402101.00	1	0.2245618	0.0992287	intercept
402.00	402102.00	1	-0.1852540	0.1060311	intercept
405.00	405101.00	1	0.2891218	0.1039840	intercept
405.00	405102.00	1	-0.4171496	0.1048178	intercept
405.00	405103.00	1	0.0957172	0.0958683	intercept
407.00	407101.00	1	0.5686286	0.0951159	intercept

School ID, Class ID, random effect number, estimate, variance, name

Empirical Bayes Estimates of Random Effects Select "Analysis" > "View Level-3 Bayes Results"

403.00	1	0.2471881	0.0745439	intercept	
404.00	1	0.0153458	0.0658483	intercept	
193.00	1	0.0605439	0.0765745	intercept	
194.00	1	0.1084941	0.0438868	intercept	
196.00	1	0.2005668	0.0675637	intercept	
197.00	1	0.0043688	0.0602617	intercept	
198.00	1	-0.1024008	0.0560158	intercept	
199.00	1	-0.2565086	0.0504731	intercept	
401.00	1	0.1946084	0.0636548	intercept	
402.00	1	0.0257770	0.0666819	intercept	
405.00	1	-0.0211861	0.0567750	intercept	
407.00	1	0.3132113	0.0531603	intercept	
408.00	1	-0.1369094	0.0684003	intercept	
409.00	1	0.1033115	0.0462808	intercept	
410.00	1	-0.4393079	0.0606901	intercept	
411.00	1	0.3263763	0.0755432	intercept	
412.00	1	-0.1111421	0.0569602	intercept	
414.00	1	-0.0262411	0.0560123	intercept	
415.00	1	0.4152628	0.0470290	intercept	
505.00	1	-0.1847633	0.0410649	intercept	
506.00	1	-0.4638935	0.0413189	intercept	
507.00	1	-0.2733055	0.0434032	intercept	
508.00	1	0.3752750	0.0455138	intercept	
509.00	1	-0.2404592	0.0338281	intercept	
510.00	1	0.0669854	0.0372791	intercept	
513.00	1	-0.2471750	0.0593768	intercept	
514.00	1	0.1012731	0.0371836	intercept	
515.00	1	-0.0552958	0.0272297	intercept	

School ID, random effect number, estimate, variance, name

To estimate the non-proportional odds model, we'll make some modifications to the mum file. First, let's save the mum file to a new name so that our previous results are not written over.

Under "File" > "Save as" type in "TVOSCNP.mum"

On the Configuration Card, modify the title

	סס אר			odol		
Title 1. Students in Classes			,			
		schools			[<u></u>	
Dependent Variable Type:	order	ed	<u> </u>	Level-21Ds;	Ulass	
Dependent Variable:	THK	Sord	-	Level-3 IDs:	School	
Categories:		Value		Write Bayes Estimates:	no	l.
	$\frac{1}{2}$	1		Convergence Criterion:	0.001	
	3	3	2	- Number of Iterations:	100	
	4	4			1.00	
Missing Values Present:	false		•	Perform Crosstat	pulation: no	
				Output Type:	standard	

On the Advanced Card, select "yes" for Explanatory Variable Interactions

General Settings Unit Weighting: equal Inclus Optimization Method: adaptive quadrature Number of Quadrature Points: 15	itory Variable Intera ude Interactions: [actions no ves	
Optimization Method: adaptive quadrature 💌 Number of Quadrature Points: 15			
Ordered Dependent Variable Settings Function Model: logistic R Level-2 Random Thresholds: no	Right-Censoring:	none	•
Level-3 Random Thresholds: no	Model Terms:	subtract	Ŧ

Type in "3" for the Number of Interactions (all explanatory variables will have non-proportional effects)

onriguration $ \Sigma_{arrapies} \Sigma_{arrang} values Eatterns \Delta c$	Ivanced Linear Transforms
General Settings Unit Weighting: equal	Explanatory Variable Interactions Include Interactions: yes Number of Interactions: 3
Optimization Method: adaptive quadrature Number of Quadrature Points: 15	
Ordered Dependent Variable Settings	5 7 <u>7</u>
Function Model: logistic 🗾	Right-Censoring: none
Level-2 Random Thresholds: no	

If fewer than 3 is specified, then which explanatory variables have non-proportional effects depends on the order that the variables were selected on the Variables card

Available	E 2 3	Explanatory Variables E	L-2 Random Effects 2
School		CC 20	
Class		TV	
THKSord		CC*TV 🔽	
THKSbin			
Intropt			
PreTHKS			
CC			
TV			
CC*TV			✓ Include Intercent
			· · · · · · · · · · · · · · · · · · ·
			L-3 Random Effects 3

If 1 was specified for the number of interactions, then CC would have non-proportional effects (but TV and CC*TV would have proportional effects). Can unselect and reselect variables if different ordering is desired.

TVOSCNP.out

0		0			
Number of quadrat	ure points =	15			
Number of free pa	rameters =	14			
Number of iterati	ons used =	13			
-21nL (deviance s	tatistic) = 4	332.42034			
Akaike Informatio	n Criterion 4	360.42034			
Schwarz Criterion	4	435.70896			
	Estimated regres	sion weights			
		Standard			
Parameter	Estimate	Error	z Value	P Value	
					=
Threshold1	-0.9775	0.1876	-5.2108	0.0000	
Threshold2	0.3693	0.1820	2.0290	0.0425	
Threshold3	1.4246	0.1956	7.2815	0.0000	
CC	0.7270	0.2810	2.5875	0.0097	
TV	0.1085	0.2661	0.4076	0.6836	
CC*TV	-0.2049	0.3956	-0.5179	0.6045	
Interactions of p	redictors with: Thr	eshold2			
CC	0.2013	0.1607	1.2530	0.2102	
TV	0.1725	0.1486	1.1608	0.2457	
CC*TV	-0.2386	0.2264	-1.0539	0.2920	
Interactions of p	redictors with: Thr	eshold3			
CC	0.0531	0.2060	0.2577	0.7966	
TV	0.2016	0.1948	1.0345	0.3009	
CC*TV	-0.3794	0.2909	-1.3045	0.1921	-

- First set of estimates (under Estimated regression weights) are for the effects on the first cumulative logit
 CC = 0.7270, TV = 0.1085, CC*TV = -0.2049
- Next estimates (under Interactions of predictors with: Threshold2) indicate how the effects are DIFFERENT on the second cumulative logit, relative to the first CC = 0.2013, TV = 0.1725, CC*TV = -0.2386
- Next estimates under Interactions of predictors with: Threshold3) indicate how the effects are DIFFERENT on the third cumulative logit, relative to the first CC = 0.0531, TV = 0.2016, CC*TV = -0.3794

⇒ note that none of these six interactions are significant; in agreement with overall LR test ($\chi_6^2 = 4339.31 - 4332.42 = 6.89$) ⇒ proportional odds assumption not rejected

Effects on the cumulative logits

- First cumulative logit:
 CC = 0.7270, TV = 0.1085, CC*TV = −0.2049
- Second cumulative logit:
 CC = 0.7270 + 0.2013 = 0.9283
 TV = 0.1085 + 0.1725 = 0.2810
 CC*TV = -0.2049 + (-0.2386) = -0.4435
- Third cumulative logit:
 CC = 0.7270 + 0.0531 = 0.7801
 TV = 0.1085 + 0.2016 = 0.3101
 CC*TV = -0.2049 + (-0.3794) = -0.5843

Linear Transforms

Fixed part of model:

$$\begin{split} \lambda_c &= \hat{\gamma}_{0c} - \left[\hat{\beta}_1 \mathbf{C} \mathbf{C} + \hat{\beta}_2 \mathbf{T} \mathbf{V} + \hat{\beta}_3 \mathbf{C} \mathbf{C} * \mathbf{T} \mathbf{V} \right. \\ &+ \left. \hat{\gamma}_{1c} \mathbf{C} \mathbf{C} + \hat{\gamma}_{2c} \mathbf{T} \mathbf{V} + \hat{\gamma}_{3c} \mathbf{C} \mathbf{C} * \mathbf{T} \mathbf{V} \right] \end{split}$$

		cumulative logit	
variable	1 vs 2,3,4	1,2 vs 3,4	1,2,3, vs 4
CC	\hat{eta}_1	$\hat{\beta}_1 + \hat{\gamma}_{12}$	$\hat{\beta}_1 + \hat{\gamma}_{13}$
TV	\hat{eta}_2	$\hat{eta}_2 + \hat{\gamma}_{22}$	$\hat{eta}_2 + \hat{\gamma}_{23}$
CC*TV	\hat{eta}_3	$\hat{eta}_3 + \hat{\gamma}_{32}$	$\hat{eta}_3 + \hat{\gamma}_{33}$

 $H_0: \beta_1 + \gamma_{12} = 0$; CC effect is 0 on the 2nd cumulative logit

$$z = \frac{\hat{\beta}_1 + \hat{\gamma}_{12}}{SE(\hat{\beta}_1 + \hat{\gamma}_{12})}$$

Linear Transforms: for estimate, std error, p-value $\beta_1 + \gamma_{12}$

onriguration Varia	bles Starting	Values Patterns A	Advanced Linea	ar Transforms		
	1	1- 1-		1		
Linear Transfo	rms	Add Transform				
CC - 2nd cumulative	e logit	Copy <u>T</u> ransform				
		<u>R</u> emove Transfor	m			
Explanatory Variable	es:	Level-2 Random	Effect (Co)varian	ces: Level-3 R	andom Effec	t (Co)variance
	Value		Value			Value
CC	1	intercept variar	nce	intercep	t variance	
ΤV						
CC*TV						
fhresholds:		Threshold Intera	ctions:			
	Value		Thresh 2	Thresh 3		
1		CC	1		-	
2		TV	1			
3		CC*TV	- A			

Linear Transforms: for estimate, std error, p-value $\beta_3 + \gamma_{33}$

Entodi Hidrio	forms	Add Transform				
CCTV - 2nd cumu CC - 3rd cumulativ	ilative logit ve logit	Copy <u>T</u> ransform	1			
V - 3rd cumulativ CTV - 3rd cumu	ve logit lative logit	<u>R</u> emove Transform				
xplanatory Variat	ples:	Level-2 Random E	Iffect (Co)varian	ices: Level-3 R	andom Effec	t (Co)variance
	Value	intercent uprion	Value	intercor	t upriprog	Value
TV		intercept varian	ce	intercep	it valiance	
CC*TV	1					
hresholds:		Threshold Interac	tions:		0	
	Value		Thresh 2	Thresh 3	8	
		CC			-	
1	1	2222020				
1 2		TV			-	

 (G	TESTING OF TRANSFORMS eneral Linear Hypothesis Testing) 			
Coefficients		Estimate	Transf	orm No.	
			1	2	3
1 Threshold1		-0.97746	0.0000	0.0000	0.0000
2 Threshold2		0.36934	0.0000	0.0000	0.0000
3 Threshold3		1.42463	0.0000	0.0000	0.0000
4 CC		0.72701	1.0000	0.0000	0.0000
5 TV		0.10846	0.0000	1.0000	0.0000
6 CC+TV		-0.20490	0.0000	0.0000	1.0000
7 CC	*Threshold2	0.20134	1.0000	0.0000	0.0000
8 TV	*Threshold2	0.17246	0.0000	1.0000	0.0000
9 CC+TV	*Threshold2	-0.23860	0.0000	0.0000	1.0000
10 CC	*Threshold3	0.05308	0.0000	0.0000	0.0000
11 TV	*Threshold3	0.20155	0.0000	0.0000	0.0000
12 CC*TV	*Threshold3	-0.37944	0.0000	0.0000	0.0000
13 Var(interc	ept)	0.16263	0.0000	0.0000	0.0000
14 Var(interc	ept)	0.10258	0.0000	0.0000	0.0000
Transform Est	imate		0.9284	0.2809	-0.4435
Standard Erro	Σ		0.2621	0.2559	0.3684
Z-Statistic			3.5425	1.0979	-1.2039
Exceedence Po	bability		0.0004	0.2723	0.2286

200					
Same -	TU	$\cap C$	CNI	D -	100
4	- T V	US	CIN	٥.٧	uι

- C X 4 LINEAR TRANSFORMS (continued) Coefficients Estimate Transform No. 4 5 6 -0.97746 0.0000 0.0000 1 Threshold1 0.0000 2 Threshold2 0.36934 0.0000 0.0000 0.0000 3 Threshold3 1.42463 0.0000 0.0000 0.0000 4 CC 0.72701 1.0000 0.0000 0.0000 5 TV 0.10846 0.0000 1.0000 0.0000 -0.20490 0.0000 0.0000 6 CC*TV 1.0000 7 CC *Threshold2 0.20134 0.0000 0.0000 0.0000 8 TV *Threshold2 0.17246 0.0000 0.0000 0.0000 9 CC*TV *Threshold2 -0.23860 0.0000 0.0000 0.0000 0.05308 1.0000 0.0000 10 CC *Threshold3 0.0000 11 TV *Threshold3 0.20155 0.0000 1.0000 0.0000 12 CC+TV *Threshold3 -0.37944 0.0000 0.0000 1.0000 13 Var(intercept) 0.16263 0.0000 0.0000 0.0000 0.10258 0.0000 0.0000 0.0000 14 Var(intercept) Transform Estimate 0.7801 0.3100 -0.5843 = Standard Error 0.2719 0.2705 0.3813 Z-Statistic 2.8692 1.1460 -1.5323 Exceedence Pobability 0.0041 0.2518 0.1254 -< III ъ. Close Save As...

Summary: models for clustered ordinal data as developed as models for continuous data

- Proportional odds models
 - $-\operatorname{covariate}$ effects are equal across C-1 cumulative logits
- Non and partial proportional odds models
 - covariate effects are all unequal across C 1 cumulative logits (non proportional odds); or some covariate effects are unequal and some are equal across C - 1 cumulative logits (partial proportional odds)
- Scaling models (Hedeker, Berbaum, & Mermelstein, 2006; Hedeker, Demirtas, & Mermelstein, 2009; not yet in Supermix)
 - Dispersion across the ordinal categories can depend on covariates; examination of extreme response styles
- Can be recast as ordinal probit mixed models by selecting probit link in Supermix