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SuperMix demonstration 
 

1 Mixed models for continuous outcomes 

1.1 The data 
The data set used here is from the Television School and Family Smoking Prevention and 
Cessation Project (TVSFP)(Flay et. al., 1988). The study was designed to test independent and 
combined effects of a school-based social-resistance curriculum and a television-based program in 
terms of tobacco use and cessation. The data from the study included a total of 1,600 students from 
135 classrooms drawn from 28 schools. Schools were randomized to one of four study conditions:  

 

o a social-resistance classroom curriculum 

o a media (television) intervention 

o a social-resistance classroom curriculum combined with a mass-media intervention, and 

o a no-treatment control group 

 

A tobacco and health knowledge scale (THKS) was used in classifying subjects as knowledgeable 
or not. In its original form, the student's score was defined as the number of correct answers to 
seven items on tobacco and health knowledge. 

 

Data for the first 10 students on most of the variables used in this section are shown below in the 
form of an SuperMix spreadsheet file, named TV2dat.xls. 

 

 
 

The variables of interest are: 

o SCHOOL indicates the school a student is from (28 schools in total). 

o CLASS identifies the classroom (135 classrooms in total). 

o THKScore represents the post-intervention tobacco and health knowledge scale. It is 
treated as a continuous variable here.  



 
 
 

5 
 

o PRETHKS indicates the pre-intervention THKS score. 

o CC is a binary variable indicating whether a social-resistance classroom curriculum was 
introduced, where 0 indicates “no” and 1 “yes.” 

o TV is an indicator variable for the use of media (television) intervention, with a “1” 
indicating the use of media intervention, and “0” the absence thereof. 

o CCxTV was constructed by multiplying the variables TV and CC, and represents the CC 
by TV interaction. 

1.2 Graphical displays 
Use the File, Import Data File… option to locate tv2dat.xls in the continuous subfolder and click the 
Open button to obtain the SuperMix spreadsheet file tv2dat.ss3. Right-click on the THKScore column 
header to obtain the Column Properties dialog box and change the Header name to POSTTHKS. 
Next, right-click on the Intrcp column and select the Delete Column option from the pop-up menu. 
These changes are saved to TVSFP.ss3 in the examples\continuous folder. 

Univariate graphs 

The pop-up menu below shows the data-based graphing options currently available in SuperMix. As 
a first step, we will take a closer look at the distribution of the total post-intervention scores 
(POSTTHKS), which is the potential dependent variable in this study. While scores such as these are 
not truly continuous variables, they are often treated as if they were. 

Bar chart 

To do so, select the Univariate option from the Data-based Graphs menu as shown below. 

 

 
 

The Univariate plot dialog box appears. Select the variable POSTTHKS and indicate that a Bar Chart 
is to be graphed. Click the Plot button to display the bar chart. 
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The bell-shaped bar chart below shows that the variable POSTTHKS is approximately normally 
distributed. Note that histograms are usually used for the depiction of the distribution of a 
continuous variable.  

 

 
Figure 1.1: Bar chart of POSTTHKS scores 

Bivariate graphs 

It is hoped that the social-resistance classroom curriculum (CC), the television intervention (TV) and 
the CC and TV interaction combination (CCxTV) would affect the tobacco and health knowledge 
(POSTTHKS). Before we start with the model, we would like to show a box-and-whisker plot of 
POSTTHKS for each category of CC.  

Box-and-whisker plots 

A box-and-whisker plot is useful for depicting the locality, spread and skewness of variables in a 
data set and may be used to examine the distributions of continuous variables, such as for the 
different values of discrete valued predictors. This option is accessed via the Data-based Graphs, 
Bivariate option on the File menu. 
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To assign labels to the categories of CC, right-click on the CC column in the spreadsheet and select 
Column Properties. On the Column Properties dialog box, select the Nominal option and assign the 
appropriate labels. 

 

 
 

The Bivariate plot dialog box is completed as shown below: select the outcome variable POSTTHKS 
as the Y-variable of interest, and the predictor CC to be plotted on the X-axis. Check the Box and 
Whisker option, and click Plot.  
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Figure 1.2: Box-and-whisker plots of POSTTHKS scores for different CC values 

 
The bottom line of a box represents the first quartile ( 1q ), the top line the third quartile ( 3q ), and 

the in-between line the median (me). The arithmetic mean is represented by a diamond. Here, the 
mean of POSTTHKS is lower in the group without the social-resistance classroom curriculum (CC). 
The box-and-whisker plot indicates a positive relationship between CC and POSTTHKS. 

1.3 A 2-level random intercept model using classroom as level-2 ID 

 The model 

The first model fitted to the data explores the cluster effects of each classroom on the outcome. The 
mixed model can be expressed as  

 

0 1 2 3 0POSTTHKS CC TV (CC TV )ij i i i i i ijv           , 

 

where 0iv  represents the classroom influence on POSTTHKS.  

 Setting up the analysis 

From the main menu bar, select the File, New Model Setup option. Select the continuous outcome 
variable POSTTHKS from the Dependent Variable drop-down list box. Select the classroom number 
CLASS from the Level-2 IDs drop-down list box. Enter a title for the analysis in the Title text boxes. 
In this example, default settings for all other options associated with the Configuration screen are 
used.  
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Proceed to the Variables screen by clicking on that tab. The Variables screen is used to specify the 
fixed and random effects to be included in the model. Select the explanatory (fixed) variables using 
the E check boxes next to the variables names in the Available grid at the left of the screen. Note 
that, as the variables are selected, the selected variables are listed in the Explanatory Variables grid. 
After selecting all the explanatory variables, the screen shown below is obtained. The Include 
Intercept check box in the Explanatory Variables grid is checked by default, indicating that an 
intercept term will automatically be included in the fixed part of the model.  
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Next, specify the random effects at level 2 the hierarchy. In this example, we want to fit a model 
with random intercepts at level 2. By default, the Include Intercept check box in the L-2 Random 
Effects grid is checked. If this box is left checked, and no additional random effects are indicated 
using the 2 column in the Available grid to the left, the model fitted will be the random-intercepts-
only model we intend to use. No further changes on this screen are necessary. 

 

Before running the analysis, the model specifications have to be saved. Select the File, Save As 
option, and provide a name (TVSFP1.mum) for the model specification file. Run the analysis by 
selecting the Run option from the Analysis menu. 

1.4 Discussion of results 

Data summary 

In the numbers of observations section, a summary of the hierarchical structure is provided. 

 

As shown below, data from a total of 1600 students within 135 classrooms were included at levels 
2 and 1 of the model. This corresponds to the study design described earlier. In addition, a 
summary of the number of students nested within each classroom is provided. The classroom with 
N2 = 6, for example, had 26 students (N1: 26). By contrast, classroom 26 had only 1 student. 
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Descriptive statistics and starting values 

Next, the descriptive statistics for all variables are given.  

 

 
 

The minimum value, maximum value, mean and standard deviation are given for all the variables 
included in the model. For example, the mean POSTTHKS is 2.6618 with a standard deviation of 
1.38293. 

Starting values – OLS estimates 

The starting values for the fixed regressor(s) are shown below. The log likelihood value and 
number of free parameters of the OLS regression are given in this part of the output. 

 

 
 

After the number of free parameters, the starting values of variance/covariance components are 
reported as shown. 
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Fixed effects estimates 

The number of iterations needed to obtain convergence is given after the starting values. The 
output describing the estimated fixed regressor(s) after convergence is shown next.  

 
 

As shown above, the estimates for CC and TV are both positive. On average, a social-resistance 
classroom curriculum can improve the tobacco and health knowledge by 0.58910, and television 
intervention can increase the POSTTHKS score by 0.12018. However the estimate of CCxTV is 
negative, which implies that the students who had both CC and TV are expected to show a decrease 
of 0.24713 in their POSTTHKS score. The estimates associated with intercept and TV are highly 
significant, but estimates of the other two coefficients are not statistically significantly different 
from zero. 
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The estimates for the fixed regressors and model fit statistics are given next.  

 

 

Random effect estimates 

The estimates for the random part of the model are reported next. The variation in the average 
estimated intercept at level 2 is highly significant, which indicates that the classroom difference in 
intercepts does help to explain the variation in POSTTHKS scores. 

 

 
 

The covariance and correlation matrix of level-2 and level-1 random effects are given at the end of 
the output file. These values are the same as the estimates of variance/covariance components as 
shown above. 

 



 
 
 

14 
 

 

End of the output 

After successfully running a SuperMix model, the following message is shown at the end of the 
output file to indicate the CPU time and the type of the outcome variable. 

 

 

Percentage variation explained 

An estimate of the percentage of variation in the outcome at classroom level is obtained as 

 
0.13361

100% 7.18%
0.13361 1.72651 

 


 

 

indicating that about 7.18% of the total variance lies between the clusters/classrooms and that 
92.82% of the variance remains at the student level.  
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1.5 A 3-level random intercept model using class and school as IDs 
The previous model showed that classroom contribute to the explanation of the total variation of 
the POSTTHKS scores. A similar situation exists in the case of schools. We now construct a three-
level model that uses both CLASS and SCHOOL as level-2 and level-3 IDs. 

 The model 

The level-1 and level-2 models are the same as the previous model, as shown below. 

 

Level-1 model ( 1 )ijk … n     

 

0POSTTHKSijk ij ijkb   , 

2(0 )ijk NID   

 

Level-2 model ( 1 )ij … n    

 0 0 1 2 3 0CC TV (CC TV )ij i i ij i ij i ij ij ijb b b b b v       

 2
0 (2)(0 )ij vv NID   

 

Level-3 model ( 1 )i … N    

 

0 0 0

1 1

2 2

3 3

i i

i

i

i

b v

b

b

b






 







 

 2
0 (3)(0 )i vv NID   

 

In this mixed model the intercept 0ijb  is estimated by a level-2 equation. It indicates that classroom 

j’s initial value is not only determined by the population average 0ib , but also by the classroom 

difference 0ijv . The level-2-intercept 0ijb  is estimated by a level-3 equation which takes the school 

difference 0iv  into consideration, where i denotes the school ID.  

 

The above model can also be written in the following format. 

 

0 1 2 3 0 0POSTTHKS CC TV (CC TV )ijk ij ij ij ij ij i ijkv v            . 
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 Setting up the analysis 

We modify our model setup saved to the syntax file TVSFP1.mum by first using the Open Existing 
Model Setup option on the File menu of the TVSFP.ss3 window to retrieve the syntax file. Then 
click on File, Save as to save the model setup in a new file, say TVSFP4.mum. Next, select SCHOOL 
as the Level-3 ID. We now have both level-2 and level-3 IDs selected.  

 

 
 

Change the string in the Title 1 text box on the Configuration tab. Notice that we would like to 
request Bayes estimates as part of the program output. To do so, select means & (co)variances 
option from the Write Bayes Estimates drop down list as shown above.  

 

Click on the Variables tab and select PRETHKS as an additional Explanatory Variable by checking 
the corresponding E check box.  
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Save the changes to the file TVSFP4.mum and select the Run option on the Analysis menu to 
produce the output file TVSFP4.out.  

1.6 Discussion of results 

Fixed effects estimates 

As shown below, the estimated coefficient of PRETHKS is highly significant. The estimate of the 
intercept coefficient decreased because part of the variation in the intercept can now be explained 
by PRETHKS.  
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Fit statistics 

The fit statistics are given below.  

 

  

Random effect estimates 

The third-level random intercept estimate is not significant at a 5% level of significance.  

 

 

Estimated outcomes for different groups 

For example, if a typical student who only participated in television intervention had a PRETHKS 
score of 2 (CC = 0; TV = 1; CCxTV = 0), the expected POSTTHKS score is calculated as follows: 

 

     00 02 04POSTTHKS TV PRETHKS

1.697+0.17811+2 0.3072

2.48951.

ijk ij ijk    

 

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ICCs and R-square 

ICCs 

The so-called ICC (interclass correlation) measures the proportion of variation in the outcome 
variable between units at the different levels. It is occasionally referred to as the cluster effect, and 
is defined as the ratio of the between-cluster variance to the total variance. From the output for the 
random effects, we have  

 







Level-1: error var = 1.6020

Level-2: class var = 0.0636

Level-3: school var = 0.0258.

 

 

Based on this information, we can calculate the ICCs as shown below. 

 

Similarity of students within the same school:  

 

 
0 0258

0 0153
1 6020 0 0636 0 0258

ICC


  
    

 

 

Similarity of students within the same classrooms (and schools):  

 

 
0 0636 0 0258

0 0529
1 6020 0 0636 0 0258

ICC
  

  
    

 

 

Similarity of classes within the same school:  

 

 
0 0258

0 289
0 0636 0 0258

ICC


  
  

 

R-square 

Another way to evaluate the explanation of variation in the outcome is to compute a statistic 
analogous to the familiar 2R  used in multiple linear regression. In a multilevel model, however, 

there is an 2R  for each variance component. Use of these statistics is not without problems, 

however, because the 2R  may at times have negative values, and in other cases the addition of 

explanatory variables can lead to an increase rather than a decrease in variance components. The 
more complex a hierarchical model is, the more likely is the occurrence of anomalies in variance-
explained statistics.  
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To calculate the 2R s for different levels of the level-3 model, we first need to get the variances for 

the null model, which is a 3-level model with no covariates. Open  TVSFP4.mum, click on the 
Variables tab, and uncheck the check boxes of the selected Explanatory Variables as shown below.  

 

 
 

Save the setup as TVSFP7.mum and run the model to get the following output of the 
variance/covariance component. 

 

 
 

The 2R s are calculated as 

 ( 2) (3)

( 2) 0 (3) 0

2 22
2 2 2

1 2 32 2 2
0

ˆ ˆˆ
1 1 1

ˆ ˆ ˆ
p pv vp

v v

R R R
 

  
       
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where subscript 0 refers to a model with no covariates (i.e., the null model, TVSFP7.out) and 
subscript p refers to a model with p covariates (i.e., the full model, TVSFP4.out). The 2R s for 

different levels are given in Table 1.1.  

 

Table 1.1: 2R  values for a set of nested models 

 

level variance null full 2R  
1 (students) 2̂  1.724 1.602 .071 

2 (classrooms) 
( 2)

2ˆ  
.085 .064 .247 

3 (schools) 
( 3)

2ˆ  
.110 .026 .764 

 

In the current example, only the intercept coefficient is allowed to vary randomly over classrooms 
and schools, thus making the calculation of the 2R  relatively straightforward. In the case of models 

with random slopes, the calculation of 2R  statistics becomes more difficult. For an extensive 

discussion of the rationale and calculation of 2R  statistics, the user is referred to Snijders & Bosker 

(2000, pp. 99 – 109). 

Residuals: Level-2 Bayes results 

Returning to the TVSFP4.mum output, click on the Analysis menu of the output window or the 
model set up window, and note that View Level-2 Bayes Results is now activated. Select the option 
to open the level-2 Bayes results. 

 

 
 

Note that the default extension for the level-2 Bayes estimates is .ba2. Part of the file is shown 
below. 
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The representations of these seven columns are given in order below. 

 

o Column 1: level-3 ID, which is school in our example.  

o Column 2: level-2 ID, which refers to classroom. 

o Column 3: number of the observations within level-2 ID, number of students within each 
classroom.  

o Column 4: the number of the empirical Bayes coefficients. 

o Column 5: the empirical Bayes estimate. 

o Column 6: the estimated variance of the Bayes coefficient. 

o Column 7: the name of the associated coefficient as used in the model.  

 

Classroom 407102 has the largest Bayes estimate with a value of 0.38397. When considering the 
class difference, the predicted POSTTHKS score for a student in this specific class who only 
participated in television intervention with a PRETHKS score of 2 (CC = 0; TV = 1; CCxTV = 0) is 
calculated as follows. 

 

       00 2 4POSTTHKS TV PRETHKS

1.697+0.17811+2 0.3072+0.38397

2.87348.

ijk iij ijk u     

 


 

Level-3 Bayes results 

Similarly, the level-3 Bayes results can be viewed by clicking on the Analysis, View Level-3 Bayes 
Results.  
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Part of the TVSFP.ba3 is shown below. 

 

 
 

The same classroom (ID = 407102) discussed above is nested in school number 407. Now,  
considering both the class and school differences, the estimated POSTTHKS for a student from this 
classroom who only participated in television intervention with a pre-intervention score of 2 (CC = 
0; TV = 1; CCxTV = 0) is calculated as follows. 

 

      0 00 2 4POSTTHKS TV PRETHKS

1.697+0.17811+2 0.3072+0.38397+0.15296

3.02644.

ijk ij iij ijk v v      

 


 

 

 

Confidence intervals for random coefficients 

The Confidence Intervals option on the File, Model-based Graphs menu provides the option to 
display confidence intervals for the empirical Bayes estimates of the random effects specified in a 
given model. This option is now used to examine the confidence intervals of the random intercepts 
for the schools, which represent the highest level of the hierarchy in the current example. 
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Select the Confidence Intervals option on the File, Model-based Graphs menu to activate the 95% 
Conf. Intervals for EB estimates dialog box. Two graphs of the confidence intervals for the 
empirical Bayes estimates of the intercepts at the classroom level and school level are obtained by 
selecting CLASS intcept and SCHOOL intcept in the Predictor column before clicking Plot.  

 

The graph obtained, as shown below, shows that, in general, the range of the confidence intervals 
for the level-3 empirical Bayes estimates of the intercepts is 0 2 0 2. .( ; ) , and the range for level-2 
is about 0 4 0 4. .( ; ) .  

 

  
 

Figure 1.3: 95% confidence intervals for level-2 Bayes estimates 
 

The deviations from the estimated population intercept over schools are also apparent. Each 
confidence interval is obtained using the formula 

 

 1 96Empirical Bayes residual . var Empirical Bayes residual . 
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2 Mixed models for binary outcomes 

2.1 The data 
The data are from the Television School and Family Smoking Prevention and Cessation Project 
(TVSFP) study (Flay, et. al., 1988) as described in the previous section of the handout.  

 

Data for the first 10 participants on most of the variables used in this section are shown below in 
the form of a SuperMix spreadsheet file, named tvsfpors.ss3, located in the Examples\Binary 
subfolder. 

 

  
 

The variables of interest are: 

o School indicates the school a student is from (28 schools in total). 

o Class identifies the classroom (135 classrooms in total). 

o THKSord represents the tobacco and health knowledge scale, with 4 categories ranging 
between 1 and 4. The frequency distribution of the post-intervention THKS scores indicated 
that approximately half the students had scores of 2 or less, and half of 3 or greater. In 
terms of quartiles, four ordinal classifications were suggested corresponding to  0 – 1, 2, 3, 
and 4 – 7 correct responses. 

o THKSbin is a recoded version of the ordinal variable THKSord, but in binary form: a value of 
"0" indicates an original scale score of 1 or 2, while a value of "1" indicates an scale score 
of 3 or 4. This variable will serve as our outcome variable in the current chapter.  

o PreTHKS indicates a student's score prior to intervention, i.e., the number correct of 7 items.  

o CC is a binary variable indicating whether a social-resistance classroom curriculum was 
introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" 
indicating the use of media intervention, and "0" the absence thereof. 

o CC*TV is the product of the variables TV and CC, and represents the CC by TV interaction. 

 

In this section we consider models for binary outcomes, using quadrature as method of estimation. 
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2.2 Graphical displays 

Exploratory graphs 

The pre-intervention scores of the students may be useful as a covariate in the analysis. To get an 
idea of the relationship between the scale score PreTHKS and the post-intervention score THKSbin, 
an exploratory graph is created. Select the Data-based Graphs, Exploratory option from the File 
menu. 

 

The New Graph dialog box is activated. Select the binary outcome variable THKSbin as the Y 
variable and the pre-intervention score PreTHKS as the X variable. Uncheck the Draw points check 
box, which is checked by default, to obtain the settings as shown. 

 

 
 

Click OK to obtain Figure 2.1. We note that the relationship is reasonably linear, and that higher 
post-intervention scores are more often observed for students with high pre-intervention scores, 
which is what one intuitively would expect.  

 

 
Figure 2.1: Exploratory graph of THKSbin vs. PreTHKS 
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Univariate graphs 

We now take a closer look at the distribution of the pre-intervention scores by utilizing the Data-
based Graphs, Univariate option on the File menu. By default, a bar chart will be produced. Select 
the variable PreTHKS in the Plot column, and click Plot. 

 

 
 

By clicking anywhere in the bars, the Bar Graph Parameters dialog box is activated. Click the Data 
button and then OK to display the data used to construct the bar chart. 

 

 
 

Figure 2.2 below shows both the graphing window with bar chart and the data in spreadsheet 
format. Note that only 55 of the 1600 observations showed a score of 5 or higher, and that no 
student obtained a pre-intervention score of 7 out of 7.  
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Figure 2.2: Bar chart of PreTHKS values 

 

2.3 A 2-level random intercept logistic model with 4 predictors 

 The model 

The outcome variable THKSbin used here is binary. It assumes a value of  "0" when the original 
scale score was either 1 or 2, and a value of "1"  for an  original scale score of 3 or 4. The predicted 
value of the outcome can be viewed as the predicted probability that THKSbin is 1. Predicted values 
outside the interval [0,1] would not be meaningful and a model constraining predicted values to lie 
in this interval would be appropriate, in contrast with the model for a continuous outcome. In 
addition, the assumption of normality at level 1 is not realistic, as the level-1 random effect can 
only assume one of two values: 0 or 1. This random effect can thus not have homogeneous 
variance.  

 

In order to insure that the predicted values lie within the (0,1) interval, a transformation of the 
level-1 predicted probability can be used. For the binary case considered here, the following link 
function is used: 

 

Prob(THKSbin 1| , )
1

ij

ijij

e

e



 


â v
 

 

where ij  represents the log of the odds of success.  

 

For the current model, we want to explore the relationship between the post-intervention scores and 
the type of intervention applied. This relationship can be expressed as 

 

0 1 2 3 4 0CC TV CC *TV PreTHKS .ij i i i ij ij iv              
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 Setting up the analysis 

Using the data in tvsfpors.ss3, we consider the situation where students are nested within schools, 
and fit a two-level model with the binary variable THKSbin as outcome. We wish to examine the 
relationships between the outcome and the two intervention methods employed, simultaneously 
taking students' pre-intervention scores into account. To do so, we use the model described above 
with schools as the level-2 units. 

 

From the main menu bar, select the File, New Model Setup option. The Model Setup dialog box that 
appears has six tabs: Configuration, Variables, Starting Values, Patterns, Advanced, and Linear 
Transforms. In this example, only three of the tabs are used.  

 

As a first step, the binary outcome variable THKSbin is selected from the Dependent Variable drop-
down list box. The type of outcome is specified as binary using the drop-down list box in the 
Dependent Variable Type field. Once this selection is made, the Categories field is displayed. The 
school identification variable is used to define the hierarchical structure of the data, and is selected 
as the Level-2 ID from the Level-2 IDs drop-down list box. A title for the analysis (optional) is 
entered in the Title fields. A convergence criterion of 0.0001 is requested. By default, the maximum 
number of iterations performed is set to 100. Empirical Bayes residuals, written to additional 
output files, are requested by setting the Write Bayes Estimates option to means and (co)variances. 
Default settings for all other options associated with this tab are used. Proceed to the Variables tab 
by clicking on this tab. 

 

  
 

The Variables tab is used to specify the fixed and random effects to be included in the model. Start 
by selecting the explanatory (fixed) variables using the first column of boxes in the Available group 
field. The first variable selected is PreTHKS, followed by CC, TV, and the interaction term CC*TV. 
After selecting these explanatory variables, the random effect(s) at level 2 must be selected. In this 
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case, we wish to allow only the intercept to vary randomly over the schools. By default, the 
intercept is assumed to vary randomly over higher levels of the hierarchy as indicated by the 
checked box for the Include Intercept option in the L-2 Random Effects group field. A common 
fixed intercept coefficient is also included, as shown in the Explanatory Variables group field. 

  

  
 

We opt to increase the number of quadrature points to be used during estimation. To do so, click 
the Advanced tab.  
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First select adaptive quadrature from the Optimization Method drop-down list box, then change the 
Number of Quadrature Points field to 25. The default distribution for a binary outcome variable is 
Bernoulli and the default link function is probit. Change probit to logistic by using the drop-down 
list box in the Function Model field. 

 

Before running the analysis, the model specifications have to be saved. Select the File, Save option, 
and provide a name for the model specification file, for example TVBS.mum. Run the analysis by 
selecting the Run option from the Analysis menu. 

2.4 Discussion of results 
Portions of the output file tvbs.out are shown below.  

Syntax 

At the top of the file, the syntax saved to the TVBS.mum file is shown. The first part states the 
selection of iteration control options, requests for Bayes residuals, and the specifications necessary 
to define the model fitted as an binary model with a logistic link function. The second part of the 
syntax provides information on the structure of the data, the name and structure of the outcome 
variable, and the predictors included in the model. Text to the left of the equal sign in each line 
denote keywords recognized by the program; text to the right are either keywords (for example, in 
the case of Cov2PatType = Correlated) or variable names as given in the ss3 file (for example, 
Level2ID = School). 
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Model and data description 

The next section of the output file contains a description of the hierarchical structure and model 
specifications.  

 

  
The use of a logistic response function (logit link function) with the assumption of a Bernoulli 
distribution is indicated. This is followed by a summary of the number of students nested within 
each school. The number of students per school (level-2 unit) ranges between 23 and 137. 

Descriptive statistics  

The data summary is followed by descriptive statistics for all variables included in the model. We 
note that 47% of the students had a value of 0 on the binary knowledge score outcome variable 
THKSbin, and 53% a value of 1. 
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Results for the model without any random effects 

Descriptive statistics are followed by parameter estimates obtained under the assumption that all 
random effects are zero. The parameter values for the predictors CC, TV, CC*TV and PreTHKS are 
given in the first column, followed by the standard errors and z- and p-values.  

 

 
 

Results for the model fitted with adaptive quadrature 

The output describing the estimated parameters after convergence is shown next. Three iterations 
were required to obtain convergence. The number of quad points used per dimension was 25. The 
likelihood function value at convergence as well as the deviance are also given, and may be used to 
compare a set of nested models. 
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The estimates are shown in the column with heading Estimate, and correspond to the coefficients 

0 1 4, , ,    in the model specification. Significant effects of PreTHKS and CC are observed. The 

variation in the intercept over the schools is estimated as 0.1065, and from the associated p-value 
we conclude that there is significant variation, at a 10% level of significance, in the intercept 
between the schools included in this analysis.  

 

 
 

In the case of the fixed effects, a 2-tailed p-value is used, as the alternative hypothesis considered 
here is of the form 1 : 0H   . As variances are constrained to be elements of the interval [0, ) , 

the p-values used for these effects are 1-tailed.  

 

If the model is true, it is assumed that the level-1 error variance is equal to 2 / 3  = 3.29895 for the 
logistic link function (see, e.g., Hedeker & Gibbons (2006), p. 157), where   represents the 
constant 3.141592654.  

Thus the estimated ratio between level-2 variation and the total variation is calculated as 

 

2

0.1065
0.031

0.1065 / 3
ICC


 


 

 

This indicates that almost all variation is attributable to students, rather than to the schools. 
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Interpreting the adaptive quadrature results 

The expected log-odds of having a high post-intervention knowledge score (THKSbin score of 1) for 
a student with a zero value on all the predictors (that is, no social-resistance curriculum, no media 
intervention, and a pre-intervention knowledge score of 0) is represented by the estimated intercept 
of -1.2281. When a social-resistance curriculum was in place (CC = 1), or a mass-media 
intervention was performed (TV = 1), the log-odds of a typical student is expected to increase, as 
indicated by the positive estimated coefficients for CC and TV. Similarly, a higher score on the pre-
intervention knowledge test is associated with higher log-odds of a higher post-intervention 
knowledge score. It can be concluded from the results that the implementation of a classroom 
curriculum was more likely to lead to a higher post-intervention knowledge score than was the case 
when mass-media intervention was used. In contrast, the log-odds of a high post-intervention 
knowledge score was expected to be lower for a typical student from a school where both social 
resistance classroom curriculum and mass-media intervention defined the study condition for that 
school, as the estimated coefficient for the interaction term CC*TV was negative.  

Estimated outcomes for different groups: unit-specific results 

To evaluate the expected effect of CC, TV, CC*TV, and PreTHKS on the predicted probability that 
the post-intervention score is equal to 1, we use the following expression for the predicted log odds 
of success 

 

     
0 1 2 3 4CC TV CC TV PreTHKSij i i i i ij              

 
 

for the four groups defined by the categories of CC and TV. Note the similarity of this equation with 
that given for ij  earlier: random coefficients are not included, as their expected value is 0. 

 

For a typical student with a PreTHKS score of 0 from any school where no media television 
intervention and no social-resistance classroom curriculum was implemented, CC = TV = 0, and thus 

 

 
0ij 
 

 

In the case of a typical student with a PreTHKS score of 0 from any school where only media 
television intervention was implemented (TV = 1),  

 

  
0 2 TV .ij i    
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The equations for similar students from a school with only a social–resistance classroom 
curriculum implemented (CC = 1, TV = 0), and from a school with both interventions implemented  
(TV = 1, CC = 1) are 

 

   
0 1 4CC PreTHKSij i ij         

and 

     
0 1 2 3 4CC TV CC TV PreTHKSij i i i i ij                

 

respectively. 

 

For a student with an average PreTHKS score (2.152, see exploratory analysis) from any school 
with similar values of CC and TV we find that 

 

  

 
0 4

0 4

PreTHKS

2.152.

ij ij  

 

  

    

 

Using the  0  and  4  estimates of -1.2281 and 0.3871 respectively as obtained for the current 

analysis, we can calculate the estimated probability of a THKSbin score of 1 for typical students 
with PreTHKS scores of 2.152 and 0 respectively as 

 
1.2281 0.3871(2.152)

1.2281 0.3871(2.152)

0.39506

0.39506

Prob(THKSbin 1| CC TV 0;PreTHKS 2.152)
1

1
0.40250

ij

e

e

e

e

 

 



    






 

 

and 
1.2281

1.2281
Prob(THKSbin 1| CC TV PreTHKS 0)

1
0.22651.

ij

e

e



    


  

 

A student with an average observed score of PreTHKS is almost twice as likely to have a THKSbin 
score of 1 as a student with the lowest observed score on the same variable. Note that we opted to 
use the mean pre-intervention score for this specific subgroup. 
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On the other end of the scale in terms of intervention, we have schools where both a social-
resistance classroom curriculum and a mass-media intervention were implemented (CC = TV = 1). 
For two typical students from these schools, an observed PreTHKS score of 0 or the mean score of 
1.979 will imply a predicted probability of a THKSbin score of 1 of 0.4201 for the first and 0.6091 
for the second. Again, the higher the pre-intervention score, the higher the predicted probability of 
a high post-intervention score. 

 

In Table 2.1, the estimated probabilities of high post-intervention scores on the tobacco and health 
questionnaire are given for typical students with high or low pre-intervention scores for each of the 
subpopulations formed by mass-media intervention and implementation of social-resistance 
classroom curriculum. 

 

Table 2.1: Estimated unit-specific probability of a high post-intervention knowledge score 

 

Group prescore prob. prescore prob. 

CC = 0, TV = 0 0 22.65% 2.152 40.25% 
CC = 1, TV = 0 0 46.54% 2.05 65.81% 
CC = 0, TV = 1 0 29.86% 2.87 48.85% 
CC = 1, TV = 1 0 42.01% 1.979 60.91% 

 

Students with a high pre-intervention score were predicted to have a high post-intervention score 
too, regardless of the study conditions. Similarly, students with a low pre-intervention score were 
generally likely to have a low post-intervention score too. If only curriculum intervention (CC = 1) 
was used, scores for students were likely to be higher regardless of their pre-intervention scores. 
On both ends of the pre-intervention knowledge score scale, in groups where mass-media 
intervention was used (TV = 1), scores were predicted to be higher than where media intervention 
was not used, except when both mass-media and curriculum intervention were used. For these 
groups, with CC = TV = 1, the estimated probabilities of a high post-intervention score were actually 
lower than for the group where only a classroom curriculum was used (42.01% vs. 46.54%, and 
60.91% vs. 65.81%).  

 

We conclude that for most students, the implementation of a social-resistance classroom 
curriculum is more likely to be effective in increasing their knowledge (predicted probabilities of a 
high score being 46.54% and 65.81% respectively) than mass-media intervention (predicted 
probabilities of a high score being 29.86% and 48.85% respectively). The control group, where 
neither method was implemented, had the lowest predicted knowledge scores (22.65% and 40.25% 
respectively). While the implementation of both procedures was associated with higher 
probabilities than either the control group or the group where only mass-media intervention was 
used, its predicted gain was disappointing when compared to the use of only social-resistance 
curriculum implementation. Generally speaking, the implementation of a curriculum only seems to 
be most effective in increasing the predicted knowledge of students on the tobacco and health 
questionnaire. 
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Estimated outcomes for different groups: population-average results 

In the introduction to this section, we defined the latent response variable model as  

 

 ' ' , 1,2,...,ij ij ij i ij iy j n    x â z v  

 

where '
ijz  denotes a design vector for the random effects contained in the vector iv , and '

ijx  the 

design vector for the predictors in the fixed part of the model with corresponding vector â  of 

regression parameters. The covariance matrix of iv  is denoted by ( )v  and the variance of ij  by 
2
 .  

 

For a probit link function 2 1  , and for a logistic link function it is assumed to be 2 2 / 3   . 

Under the assumption that iv  and ij  are independently distributed, it follows that 

 

 2 ' 2.
ij iy ij v ij   z z  

The design effect ijd  is defined in terms of 2
  and 2

ijy :  

 

 
2

2
.ijy

ijd






 

 

This design effect may be used to obtain the estimated population-average probabilities in a similar 

fashion as the unit-specific probabilities, but with replacing  ij  with  *
/ij ij ijd   (Hedeker & 

Gibbons, 2006).  

 

We can compare these estimated population-average probabilities with the observed data for the 
four groups formed by the categories of TV and CC as shown in Table 2.2. To illustrate, we 
calculate the estimated population-average probabilities for a few of the subgroups. 

 

From the output, we have  0var 0.1065iv  , where 0iv  denotes the random intercept coefficient. In 

this case, '
ik z 1  and hence, with 2 2 / 3    for the logistic link,  

 

 2 1 0.1065 1 3.2899 3.3964.
ijy       
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Therefore 

 
3.3964

1.0324.
3.2899ijd    

 

To obtain the population-average probability estimates, we now replace the  ij  values calculated 

for the unit-specific case with  *
/ij ij ijd  . 

 

For the subgroup where TV = CC = 0 and the mean  PreTHKS value is equal to 2.152, for example, 
we find that 

 

 
 1.2281 0.3871(2.152)

0.39506
ij   
 

 

so that 

*
0.39506 / 1.0324
0.38881

ij  
 

 

and 

 

*

*(THKSbin 1| CC TV 0,PreTHKS 2.152)
1

0.67786
40.40%.

1.67786

ij

ij
ij

e
P

e




    


 

 

 

Similarly, for the group where TV = CC = 0 and  PreTHKS = 0, we find that 

 

 



*

1.2281

1.2281/1.01606
1.2087.

ij

ij





 

 
 

 

 

Table 2.2: Estimated population-average probabilities 
 

Group prescore prob. prescore prob. 

CC = 0, TV = 0 0 22.99% 2.152 40.40% 
CC = 1, TV = 0 0 46.59% 2.05 65.57% 
CC = 0, TV = 1 0 30.14% 2.87 48.87% 
CC = 1, TV = 1 0 42.13% 1.979 60.74% 
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A comparison of these probabilities with the observed ratios given in Table 2.3 for the control 
group at the end of the study indicates that the population-average results are slightly closer to the 

observed ratios than is the case for the unit-specific results. Recall that 1.0161ijd  . The extent of 

differences between unit-specific and population-average results is highly dependent on the 

"scaling" induced by dividing the   sij  by ijd . 

 

Table 2.3: Observed and predicted proportions of high post–intervention scores 

 

Group Proportion observed Unit-specific 
predicted prob. 

Population-average 
predicted prob. 

CC = 0, TV = 0 41.57% 40.25% 40.40% 
CC = 1, TV = 0 63.16% 65.81% 65.57% 
CC = 0, TV = 1 48.32% 48.85% 48.87% 
CC = 1, TV = 1 60.31% 60.91% 60.74% 

 

Interpreting the contents of the level-2 residual file 

In addition to the standard output file, the Write Bayes Estimates field on the Configuration tab of 
the Model Setup dialog was used to request Bayes estimates for the individual random terms. These 
estimates are written to the file TVBS.ba2. The first few lines of this file are shown below. 

 

Four pieces of information per school are given:  

 

o all 1s for the level-2 model, 

o the school’s ID,  

o the value of  random intercept,  

o the empirical Bayes estimate,  

o the associated posterior variance for the school estimate, and 

o the name of the associated random coefficient. 
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The mean of the empirical Bayes estimates is – 0.0002. The estimates ranged from – 0.473258 for 
school 506 to 0.410744 for school 407. In both cases a mass-media intervention procedure was 
applied, and thus TV = 1, but CC = CC*TV = 0. For students with a PreTHKS score of 3 from each of 
these schools, this implies 

 
0.473258 0.3741 0.3871(3)

0.473258 0.3741 0.3871(3)

1.062142

1.062142

Prob(THKSbin 1| CC 0,PreTHKS 3, ID 506)
1

0.7431
1

ij

e

e

e

e

  

      


 


 

 

and 

 
0.410744 0.3741 0.3871(3)

0.410744 0.3741 0.3871(3)

1.946144

1.946144

Prob(THKSbin 1| CC 0,PreTHKS 3, ID 407)
1

0.8750
1

ij

e

e

e

e

 

     


 


 

 

respectively. The fact that the intercept for school 407 lies higher than the average is reflected in 
the higher probability (87.5%) that a student with average pre-intervention knowledge score will 
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obtain a high post-intervention score. School 506, on the other hand, has an intercept far below the 
average, and a student from this school has, in effect, a 74.31% chance of obtaining a high post-
intervention score.  

2.5 A 3-level random intercept logistic regression model 
Having fitted 2-level models where students were nested within either classrooms or schools thus 
far, we now consider a 3-level model with both classroom and school defining levels of the 
hierarchy.  

 Setting up the analysis 

We modify our model setup saved to the syntax file TVBS.mum by first using the Open Existing 
Model Setup option on the File menu to retrieve the syntax file. Then click on File, Save as to save 
the model setup in a new file, such as TVBSC.mum. Next, select CLASS as the Level-2 ID and 
SCHOOL as the Level-3 IDs as shown below. We now have both level-2 and level-3 IDs selected. 

 

 
 

Keep all the other settings unchanged. Save the changes to the file TVBCS.mum and select the Run 
option on the Analysis menu to run the analysis.  
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2.6 Discussion of results  
The portions of the output file TBVSC.out containing the estimates of the fixed and random 
coefficients in the current model are shown below.  

 

 

 

 
 

Results for this model are compared to those obtained using the 2-level model previously 
considered, along with a model in which students are nested in classrooms. Generally, there is 
close agreement between the models in terms of both the sign and size of the effects. Note that the 
only intervention method that consistently has an estimated coefficient significantly different from 
zero is CC. While use of the media intervention (TV) can positively influence the post-intervention 
score, it seems clear that using both methods simultaneously does not have any real benefits. 
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Table 2.3: Comparison of results for three models with binary variable THKSbin as outcome 
 

2-level: 2-level: Coefficient 
CLASS as ID SCHOOL as ID 

3-level 

Fixed effects:         
estimate -1.2535 -1.228 -1.2465 

Intercept standard error 0.1695 0.1949 0.1957 
estimate 0.401 0.3871 0.3954 

PRETHKS standard error 0.0461 0.0451 0.0463 
estimate 0.9883 1.0893 1.0383 

CC standard error 0.1973 0.2454 0.2448 
estimate 0.287* 0.3741* 0.3325* 

TV standard error 0.192 0.235 0.2358 
estimate -0.369* -0.5578* -0.4644* 

CCxTV standard error 0.2774 0.3403 0.3427 
Random effects:         

estimate 0.2193 0.1649 Var(between 
classrooms) standard error 0.0802   0.0813 

estimate 0.1065 0.063* Var(between 
schools) standard error   0.0578 0.0616 

 

*: Not significant at 5% level of significance. 

3-level ICCs 

Intraclass correlation coefficients can be obtained for the three-level dichotomous outcome model. 
As mentioned earlier, it is assumed that the level-1 error variance is equal to 2 / 3  for the logistic 
link function if the model is true (see, e.g., Hedeker & Gibbons (2006), p. 157). Using this 
approximation, the formulae for the standard ICCs can be adjusted. 

 

From the output for the random effects, we have  

 







2Level-1: error var = /3=3.2899

Level-2: class var = 0.1649

Level-3: school var = 0.0630.



 

 

Based on this information, we can calculate the ICCs as shown below. 
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Similarity of students within the same school:  

 
2
(3)

2 2 2
(3) (2)

0 063

0 063 0.1649 3.28986

0 0179.

v

v v

ICC


  


 
    

   

 

Similarity of students within the same classrooms (and schools):  

 
2
(2)

2 2 2
(3) (2)

0 1649

0 063 0.1649 3.28986

0 04688.

v

v v

ICC


  


 
    

   

 

Similarity of classes within the same school:  

 
2
(2)

2 2
(3) (2)

0 1649

0 063 0.1649

0 7236.

v

v v

ICC


 


 
  

   

Estimated unit-specific and population-average probabilities 

Under the assumption that iv , ijv and ijk  are independently distributed, it follows that for the 

three-level model the design effect is defined as 

 
2 2 2

(3) (2)

2

( )
1.0692.v v

ijkd
    

 


 

 

The estimated unit-specific probabilities are calculated using 

 

 1.2465 1.0383 CC 0.3325 TV 0.4.644 CC TV

0.3954 PreTHKS
ijk i i i i

ijk

         

 
 

 

 



 
 
 

46 
 

 

and 

1
Prob(THKSbin 1| )

1 ijke
 


â

 
 

The estimated population-average probabilities (Hedeker & Gibbons, 2006) are obtained in a 

similar fashion as the unit-specific probabilities after replacing  ijk  with  *
/ijk ijk ijkd   in the 

second of the equations shown above. 
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3 Mixed models for ordinal outcomes 

3.1 The data 
To illustrate the application of the mixed-effects ordinal logistic regression model to longitudinal 
data, we examined data collected in the NIMH Schizophrenia Collaborative Study on treatment-
related changes in overall severity. Specifically, Item 79 of the Inpatient Multidimensional 
Psychiatric Scale (IMPS; Lorr & Klett, 1966) was used. In this study, patients were randomly 
assigned to receive one of four medications: placebo, chlorpromazine, fluphenazine, or 
thioridazine. Since previous analyses (Longford, 1993, and Gibbons & Hedeker, 1994) revealed 
similar effects for the three anti-psychotic drug groups, they were combined in the present analysis. 
Finally, again based on previous analysis, a square root transformation of time was chosen to 
linearize the relationship of the IMPS79 scores over time.  

 

Data for the first 10 observations are shown below in the form of a SuperMix spreadsheet file. Open 
the SuperMix spreadsheet file schizx1.ss3 stored from the examples\ordinal folder. Save this 
spreadsheet as schizx.ss3 in the same folder, and rename the columns headers using the Column 
Properties dialog box so that A = ID, E = Drug, and H = WSQRT*DRUG, as shown below. 

 

 
 

The variables of interest are: 

 

o ID indicates the subject (437 patients in total). 

o IMPS79 represents the original score on Item 79 of the Inpatient Multidimensional 
Psychiatric Scale. It was scored as: 1 = normal, or not at all ill; 2 = borderline mentally ill; 3 
= mildly ill; 4 = moderately ill; 5 = markedly ill; 6 = severely ill; and 7 = among the most 
extremely ill. 

o IMPS79D is a recoded version of the same scale, but in binary form, where scores up to, but 
excluding 3.5 were coded 0, and scores of 3.5 or higher were coded 1. The value "0" is 
associated with measurements classified as normal, borderline, mildly, or moderately 
mentally ill, while the value "1" was assigned to measurements corresponding to "markedly 
ill" through "most extremely ill." 
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o IMPS79O is also a recoded version of the same scale, but with the 7 original categories 
reduced to four: 1 = normal or borderline mentally ill, 2 = mildly or moderately ill, 3 = 
markedly ill, and 4 = severely or among the most extremely ill. 

o DRUG indicates the treatment group, where 0 indicates the placebo patients, and 1 refers to 
the drug patients.  

o WEEK represents the time during the course of the study when a specific measurement was 
made, and ranges between 0 and 6. 

o SQRTWEEK is the square root of WEEK. This variable is generated within the SuperMix 
spread sheet.  

o WSQRTxDRUG is the product of the treatment group and the square root of WEEK. 

 

In this data file, each subject's data consist of seven lines, these being the repeated measurements 
on seven occasions. Notice that there are missing value codes (-9) for some subjects at specific time 
points. The data from these time points will not be used in the analysis, but data from these subjects 
at other time points where there are no missing data will be used in the analysis. Thus, for inclusion 
into the analysis, a subject's data (both the dependent variable and all model covariates being used 
in a particular analysis) at a specific time point must be complete. The number of repeated 
observations per subject then depends on the number of time points for which there are non-
missing data for that subject. The specification of missing data codes will be illustrated in the 
model specification section to follow. 

3.2 Graphical displays 

Defining column properties 

Defining column properties for the ordinal data is recommended. We use the column of IMPS79O 
as an example. First, highlight the column of IMPS79O by clicking on its header. Then right click 
and select the Column Properties option as shown below to open the Column Properties dialog box. 

 

 
 

The header of the Column Properties dialog box indicates the current variable name. Keep the 
default number of decimal places unchanged. Enter -9 in the Missing Value Override string box. 
Select the Ordinal radio button to activate the grid field to enter the labels for each category as 
shown below. 
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Click on the OK button and save the change to the data set by clicking on the File, Save option. 

Univariate graphs 

As a first step, we take a look at the ordinal variable IMPS79O which is the potential dependent 
variable in this study.  

Pie chart 

To generate a pie chart for IMPS79O, first open the schizx.ss3 in the SuperMix spread sheet. Next, 
select the File, Data-based Graphs, Univariate option to load the Univariate plot dialog box. Select 
the variable IMPS79O and indicate that a 3D Pie Chart is to be graphed as shown below.  

 

 
 

Click the Plot button to display the following pie chart. Note that most of the observations fall into 
the Severe illness category. Keep in mind that the pie chart takes all observations, regardless of the 
time of measurement, into account. As such, it is informative about the distribution of all observed 
values of the potential outcome, but does not provide any information on possible trends in illness 
level over time.  
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Figure 3.1: Pie chart of IMPS79O values 
 

Relationships between variables: bivariate bar chart 

It is hoped that the severity of the illness (IMPS79O) will decrease over the treatment period. Before 
considering fitting a model to these data, we would like to explore the relationship between IMPS79O 
and WEEK using a bivariate bar chart.  

Bivariate bar chart 

A bivariate bar chart is accessed via the Data-based Graphs, Bivariate option on the File menu. The 
Bivariate plot dialog box is completed as below: select the outcome variable IMPS79O as the Y-
variable of interest, and the predictor WEEK to be plotted on the X-axis. Check the Bivariate Bar 
Chart option, and click Plot. 
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As shown below, most patients did not participate in the study at weeks 2, 4 and 5. At the 
beginning of the study (week 0), a large percentage of patients are markedly or severely ill. By the 
end of the study (week 6), most patients are reported as normal or moderate. 

 

  
Figure 3.2: Bar chart of IMPS79O vs. WEEK 

 

3.3 An ordinal regression model with random intercept 
An ordinal variable is a categorical variable where there is a logical ordering to the categories. In 
most cases, treating an ordinal outcome as a continuous variable is inadvisable, due to the reasons 
discussed in Section XX.1.1. As in the case of a binary outcome variable, a link function is used  in 
order to take the ceiling and floor effects of the ordinal outcome into account. The available link 
functions in SuperMix include probit, logistic, complementary log-log and log-log.  

 The model 

Let the outcome variable be coded into c categories, where 1,2,...,c C . In this example, the 
ordinal variable IMPS79O defines the severity of the illness in terms of four categories, and thus 

4C  . As ordinal models utilize cumulative comparisons of the categories, define the cumulative 

probabilities for the C categories of the outcome Y as  
1

Pr
c

ijc ij ijk
k

P Y c p


   , where ijkp  

represents the probability that the response of the jth measurement on patient i occurs in category k.  

 

The type of drug, time elapsed since start of treatment, and the interaction between drug taken and 
time elapsed are of interest as predictors. The logistic regression model with IMPS79O as outcome 
can then be written as  

 
Level 1 model:   

 0 1 2 3log DRUG SQRTWEEK WSQRT×DRUG
1

ijc
ij c i i i i i i i

ijc

P
y b b b b

P


 
            , 

1 ; 1, 2, , 1ij n c C     
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Level 2 model:  

0 0 0

1 1

2 2

3 3

, 1i i

i

i

i

b v i N

b

b

b






    








 

 

The cumulative probability can be expressed by 

 

 

 

0 1 2 3

0 1 2 3

DRUG SQRTWEEK WSQRT×DRUG

DRUG SQRTWEEK WSQRT×DRUG
1

c i i i i i i i

c i i i i i i i

b b b b

ijc b b b b

e
P

e





     

     


  

 

To obtain the probability for category c ,  

 

, , 1 ,ij c ij c ij cp P P   

  

As shown above, the intercept 0ib  is estimated by a level-2 equation. It indicates that patient i’s 

initial IMPS79O value is not only determined by the population average 0 , but also by the patient 

difference 0iv . In other words, patients may have different average intercepts, and the model makes 

provision for this eventuality. The slopes are assumed to be the same for all the patients, which 
implies that each patient’s trend line is parallel to the population trend. 

 

The connection between an ordinal outcome variable y  with C categories and an underlying 

continuous variable *y  is  

 
*

1 , 1,2,...,j jy c y c C     
 

 

where it is assumed that 0    and C   . In addition, 1  is usually set to 0 to avoid 

identification problems. 
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 Setting up the analysis 

Open the SuperMix spreadsheet schizx.ss3 and select the File, New Model Setup option. In the 
Configuration screen of the Model Setup window, enter a title for the analysis in the Title text boxes. 
Select ordered from the Dependent Variable Type drop-down list box. Select the outcome variable 
IMPS79O from the Dependent Variable drop-down list box. Once this selection has been made, the 
Categories grid is displayed, with the distinct values of the categories shown.  

 

 
 

We notice that the missing value -9 is also included as a category. The Missing Values Present 
drop-down list box is used to specify the values of missing data for both outcome and predictors. 
As a first step, set the value of the Missing Values Present drop-down list box to True. The 
appearance of the screen will change when this is done, and text boxes for the specification of the 
missing data codes are displayed. Start by entering the value -9 in the Missing Value for the 
Dependent Var text box. Do the same for all the predictors included in the model by entering -9 in 
the Global Missing Value text box. Finally, select the patient ID from Level-2 IDs drop-down list box 
to produce the Configuration screen seen above.  

 

Proceed to the Variables screen by clicking on this tab. The Variables tab is used to specify the 
fixed and random effects to be included in the model. Select DRUG, SQRTWEEK and 
WSQRTxDRUG as explanatory (fixed) variables using the E check boxes next to the variables names 
in the Available grid at the left of the screen. The Include Intercept check box in the Explanatory 
Variables grid is checked by default, indicating that an intercept term will automatically be 
included in the fixed part of the model. Next, specify the random effects at level 2 of the hierarchy. 
In this example, we want to fit a model with random intercepts at level 2. By default, the Include 
Intercept check box in the L-2 Random Effects is checked, indicating the inclusion of a random 
intercept at this level in the model.  
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The default link function for the ordinal outcome variable is the probit link function. To change it 
to the logistic link function corresponding to the model formulation above, click on the Advanced 
tab and select the logistic link function from the Function Model drop-down list box as shown 
below. Use 25 quadrature points. 

 

 
 

Before running the analysis, the model specifications have to be saved. Select the File, Save As 
option, and provide a name (SCHIZX1.mum) for the model specification file. Run the analysis by 
selecting the Run option from the Analysis menu.  
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3.4 Discussion of results 

Syntax 

The syntax corresponding to the model setup is given in the model specifications. These lines of 
SuperMix syntax are saved as a *.inp file with the same name as the model setup file (*.mum). At the 
top of the output file, the syntax lines are printed as shown below. The first part indicates that an 
ordinal outcome is analyzed, states the selection of iteration control options, does not request Bayes 
residuals, and contains all the specifications necessary to define the model fitted as an ordinal 
model with logistic link function. The second part of the syntax provides information on the 
structure of the data, the name and structure of the outcome variable, the missing values and the 
predictors included in the model. 

 

 

Data summary 

The next section of the output file contains a description of the hierarchical structure and model 
specifications. The use of a logistic response function (logit link function) with the assumption of a 
normal distribution of random effects is indicated.  

 

 



 
 
 

56 
 

This is followed by a summary of the number of observations nested within each patient. As shown 
below, 437 patients with a total of 1603 observations are included in this study after listwise 
deletion. The number of observations per patient (level 2 unit) varies between 2 and 5. 

Descriptive statistics and starting values 

Next, the descriptive statistics for all the variables are given. Notice that the variable name 
WSQRTxDRUG is truncated to WSQRTxDR. This is because SuperMix only recognizes the first 8 
characters of a variable name. 

 

 
 

As shown below, the output file for the ordinal outcome also provides a frequency table for the 
dependent variable. The data summary is followed by descriptive statistics for all the variables 
included in the model (not shown). We note that 33% of the measurements were in the highest 
category of the outcome variable, and correspond to the "severely or among the most extremely ill" 
group. Only 12% of measurements are in the first category ("normal, not at all ill"). 

 

 
 

Descriptive statistics are followed by the starting values of parameters. The starting values for the 
predictors intercept, DRUG, SQRTWEEK and WSQRTxDR are given in the first line (covariates), while 
the starting value for the variance component associated with the random level-2 intercept is given 
in the second line (var. terms). The third line shows the starting values of the thresholds. In 18% of 
the subjects, no change in the category assigned for measurements was observed, as indicated by 
the last two lines shown below. Since the first threshold is fixed at 0 for identification purposes, 
starting values for the second and third thresholds only are listed. 
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Fixed effects estimates 

The final results after 16 iterations are shown next. The estimates are shown in the column with 
heading Estimate, and correspond to the coefficients 0 1 3, , ,    in the model specification. The 

standard error, Z-value and p-value are also printed. 

 

 
 

The variation in the intercept over the subjects is estimated as 21.94225 3.77233 , and from the 
associated p-value we conclude that there is significant variation in the (random) intercept between 
the patients included in this analysis. In the case of the fixed effects, a 2-tailed p-value is used, as 
the alternative hypothesis considered here is of the form 1 : 0H   . As variances are constrained 

to be elements of the interval [0, )  and thresholds are constrained so that 1 2 3    , the p-

values used for these effects are 1-tailed. The results indicate that the treatment groups do not differ 
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significantly at baseline (the estimated DRUG coefficient is not significant). The placebo group 
seems to improve over time, as the SQRTWEEK coefficient is both significant and negative. Note 
that the interpretation of the main effects depends on the coding of the variable, and on the 
significance of the WSQRTxDR interaction which forms part of the model.  

 

As noted before, it is assumed that 0    and C   , with 1  usually set to 0 to avoid 

identification problems. For the present example, C = 4, and from the output we see that 


2 3.03264   and  3 5.15150.   These values are used in combination with the coefficients of 

DRUG, SQRTWEEK, and WSQRTxDR to calculate estimated outcomes for different groups of 
patients (see Section XXX). 

Intraclass correlation (ICC) 

Below the estimate the intracluster correlation (ICC) is given. The residual variance for the logistic 
link function is assumed to be 2 / 3 . 

 

 
 

The ICC in this model refers to the intra-person correlation. It is reported as 0.534, which is fairly 
high. Generally, the shorter the interval between the repeated measurements, the higher the ICCs 
will be. 

Estimated outcomes for groups: unit-specific probabilities 

To evaluate the expected effect of the treatment group and the square root of time of treatment, 
while allowing for the interaction between treatment and the square of time, we use the expression 
below: 

 

 0 1 2 3

ˆ
ˆ ˆ ˆ ˆˆlog DRUG SQRTWEEK WSQRT×DRUGˆ1

ijc
c i i i i i i i

ijc

P
b b b b

P


 
          
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or  



 

ˆ
log ˆ1

ˆ 5.85942 0.05909 DRUG 0.76571 SQRTWEEK
1.20609 WSQRT×DRUG .

ijc
ijc

ijc

c i i

i

P

P




 
   
     
 

 

 

When c = 1 and 1 0  , we find that, for a patient from the control group (DRUG = 0, SQRTWEEK = 

WSQRTxDR = 0),  

 







1

1

1
1

1

1

ˆ
log 0 5.85942ˆ1

ˆ 0.002844
1

ij

ij

ij
ij

ij

ij

P

P

e
P

e






 

     

 


 

 

Similarly, the probabilities that a typical patient from the control group responded in a specific 

category at the start of the study are obtained by substituting 1 0   with  2 3 03264.  , and 


3 5 15050.  . The cumulative probabilities we calculated are 

 








2

2

3

3

3.03264-5.85942

2 3.03264-5.85942

5.1505-5.85942

3 5.1505-5.85942

ˆ 0.05589
11

ˆ 0.32984
11

ij

ij

ij

ij

ij

ij

e e
P

ee

e e
P

ee









  


  


 

 

Thus, the estimated category probabilities we have for such a group (category 1 to 4) are obtained 
as 

 

1

2

3

4

ˆ 0.00284 0 0.00284

ˆ 0.05589 0.00284 0.05305

ˆ 0.32984 0.05589 0.27394

ˆ 1 0.32984 0.67016

ij

ij

ij

ij

p

p

p

p

  

  

  

  

 

 

For this group of patients (DRUG = 0) at the starting week, the expected percentages of patients in 
each of the categories are as follows: 0.3% of the patients are normal or borderline mentally ill; 
5.3% of the patients are mildly or moderately ill; 27.4% are markedly ill and 67% are severely or 
extremely ill. Similarly, we can calculate the estimated percentages for both groups at all the time 
points as shown in Table 3.1. 
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Table 3.1: Estimated % for both groups at 7 time points  
 

  Placebo patients (drug = 0) Drug patients (drug = 1) 
severity normal moderate marked severe normal moderate marked severe 
week 0 0.28% 5.30% 27.39% 67.02% 0.30% 5.61% 28.39% 65.70% 
week 1 0.61% 10.68% 40.13% 48.58% 2.13% 28.96% 47.86% 21.05% 
week 2 0.84% 14.05% 44.36% 40.76% 4.69% 45.83% 38.94% 10.54% 
week 3 1.06% 17.17% 46.73% 35.04% 8.43% 57.21% 28.43% 5.92% 
week 4 1.30% 20.19% 47.98% 30.52% 13.51% 62.91% 20.00% 3.58% 
week 5 1.56% 23.15% 48.47% 26.83% 19.92% 63.85% 13.95% 2.28% 
week 6 1.83% 26.04% 48.39% 23.75% 27.48% 61.24% 9.78% 1.51% 

 


