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3. Models for count outcomes

3.1 Introduction

A count variable counts the number of discrete occurrences of a characteristic of
interest that takes place during a time interval. Examples are the occurrence of
cancer cases in ahospital during a given period of time, the number of cars that pass
through atoll station per day, and the phone calls at acall center.

The most common distribution for a count variable is the Poisson distribution.
Besides the Poisson distribution, negative binomial distributions may also be used to
describe the properties of count variables. In this chapter, models for count data,
utilizing both the Poisson and negative binomial distributions, are discussed. For
further information regarding these distributions, please refer to chapter XXX.

3.1.1 Poisson distribution

The Poisson distribution is a discrete probability distribution. It is appropriate for
expressing the probability of a number of events occurring in a fixed time period
with a known average rate, under the assumption that the occurrences are
independent of one another.

The probability of k occurrences can be expressed as

—1 1k
Fkoa) =24

for k=0,12,...

where k is a non-negative integer and A is apositive real number, which equals the
expected number of occurrences during the given interval.



The cumulative probability functionis

k ef/l/li

Pr(k;l)=z .

for k=0,12,...,

with the single parameter 4. A Poisson distribution has an important property: the
mean number of occurrences A is equal to the variance: E(f)=var(f)=24.

Figure XXX.1 shows Poisson probabilities f (k) and cumulative probabilities g(k)
for A =0.5, 2and 5.

Poisson Distribution
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Figure XXX.1: Poisson probabilities for various values of A



As shown above, the smaller 1 is, the more skewed to the right the probability
distribution is. When A is large, the Poisson distribution is close to the norma
distribution.

The log link function is generally used for the Poisson distribution. Assume the
response measurements for a count variable y,, ..., y, areindependent and

y, ~Poi(4), where 4 =&t
The natural logarithm of the above equation is used to define the link function:
Iog(ﬂﬁ ) = ﬂl)ﬁl +"'+:Bp)§p

As shown in Figure XX X.2, using the log link function maps the mean of the count
variable 2 with an openinterval (0,+) to the set of real numbers (-, +).

log link

In{My
N

Figure XXX.2: Log link function



3.1.2 Negative binomial distribution

The negative binomial distribution is a probability distribution used to describe a
certain number of failures and successes in a series of independent and identically
distributed Bernoulli trials. Specifically, for k+r Bernoulli trials with success
probability p, the negative binomia gives the probability of k failures and r

successes, with success on the last trial. In other words, the negative binomial

distribution is the probability distribution of the number of failures before the r™
success in aBernoulli process, with probability p of success on each trial.

The negative binomial distribution can be expressed as

1H(yi+1/05) § (Ofﬂi)y'
(yi +1)F(1/a) (1+04Ui)yi+l/a

Fv)=r

with 2(y; )= +au’, where T'( ) is the gamma function or generalized factorial

from advanced calculus, and where o denotes an additiona parameter and it can no
longer be assumed that the variance is a known function of the mean. In the example
to follow, « isassumed to have afixed value.

3.1.3 Adaptive versus non-adaptive quadrature

Ordinary quadrature is a numeric method for eval uating multi-dimensional integrals.
For mixed-effect models with count and categorical outcomes, the log-likelihood
function is expressed as the sum of the logarithm of integrals, where the summation
is over higher-level units, and the dimensionality of the integrals equals the number
of random effects.

A problem with ordinary quadrature is that it assumes a common location and scale
for each level-2 unit. This assumption often requires the use of a large number of
guadrature points to calculate the log-likelihood and derivatives to an acceptable
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level of accuracy. To overcome this problem with ordinary quadrature, SuperMix
also offers a numeric integration procedure called adaptive quadrature. The adaptive
guadrature procedure uses the empirical Bayes means and covariances, updated at
each iteration to essentially shift and scale the quadrature locations of each higher-
level unit in order to place them under the peak of the corresponding integral. To
distinguish between the two quadrature methods, SuperMix uses the terminology
non-adaptive quadrature (ordinary quadrature) and adaptive quadrature. To illustrate
this, modelsin Section 3.2 will be fitted using adaptive quadrature, while modelsin
Section 3.3 will use the default method of non-adaptive quadrature.



3.2 Two-level models for count outcomes from NESARC data
3.2.1 The data

The data set is from the National Epidemiologic Survey on Alcohol and Related
Conditions (NESARC), which was designed to be a longitudinal survey with its first
wave fielded in 2001-2002. This data file has been used in some of the examplesin
Chapter XXX. Detaled information about the survey is available at
http://niaaa.census.gov/index.html.

In Section 4 of the description of the NESARC study, information on the data
regarding occurrences of major depression, family history of major depression and
dysthymia are collected. This information was used, in combination with the
demographic information provided in Section 1 of the study description, to
produced the nesarc_poi.ss3 data set used in this section. The image below shows
the first ten records of this data set. There are 2339 dysthymia respondents in the
survey; after listwise deletion, the sample sizeis 1981.

B nesarc_poi.ss3 -0 x|

Apply |

j—ry

(41 PSU | [B1 FINWT | [C] CONC | (D] AGE D | E] N DEP |«
1 1011 725615 0 51 1
2 1011 JFEET 1 45 1
3 1011 05210 1 | 1
4 1011 118203 1 % 2
5 1011 304105 1 17 1
B 1011 934294 0 16 1
¥ 1011 E767.06 1 29 1
g 1011 346029 1 43 1
g 1015 2167.29 1 55 1

10 1018 101456 0 37 1w
4 | b



http://niaaa.census.gov/index.html

The variables of interest are:

3.21.1

PSU denotes the Census 2000/2001 Supplementary Survey (C2SS) primary
sampling unit.
FINWT represents the NESARC welghts sample results used to form national

level estimates. The final weight is the product of the NESARC base weight
and other individual weighting factors.

CONC_DEP contains the information captured in field s4cQ3a6 of the
NESARC data. It represents the response to the statement "Often had trouble
concentrating/keeping mind on things,” with 1 indicating "Yes,” and O
indicating "No."

AGE_DEP is based on field S4CQ7AR of the NESARC data. It represents the
age at onset of first episode.

N_DEP is recoded from field s4CcQ6A of the NESARC data, and gives the
number of depression/dysthymia episodes. This is the count variable we
would like to use as outcome variable in the examples to follow.

Exploring the data

Inspecting the distribution of the intended outcome variable, N_DEP, before starting
with the model is important. In the case of a count variable, this can easily be done
by producing a bar chart of the observed frequencies of occurrence captured by the
count variable. Select the File, Data-based Graph, Univariate option from the main
SuperMix window and request a bar chart before clicking the Plot button.
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% SuperMix - [Bar Chart - N_DEP] =l
 File Settings Window Help — &) x|

N_DEP

1500 4

1000 4

400

Figure XXX.3: Bar chart for count variable N_DEP

The frequency bar chart for the count variable N_DEP shown in Figure XXX.3 is
obtained. We note that the number of depression episode ranges from 1 to 29, with
most respondents having a small number of reported episodes of depression.

3.2.2 A 2-level Poisson model with 2 predictors
3.2.2.1 The model

The first model fitted to the data explores the relationship between N_DEP and the
variables indicating concentration (or lack thereof) and age, as represented by the
variables CONC_DEP and AGE_DEP.

Thelevel-1 modd is

log(4; ) = B, + B3, x CONC_DEP, + 8, x AGE_DEP,
where the expected number of depression episodesis 4; :E( N_DER, ) .

11



Thelevel-2 model is
By =by+V, Bi=b, and B, =b,,.
Another way of writing the combined model is

log( 4 ) = by, + by, x CONC_DEP, + b, x AGE_DEP, +V,.

In this model, €™ denotes the average expected count of depression episodes, and
b, represents the estimated coefficient for the respondent's level of concentration.

Taking exponents on both sides, we also have

;’-i' _ eb00+blo><CONC_DEP”- +byyxAGE_DEP; +Vjq
J

_ o oxCONC_DER; byxAGE_DEP;

For a person who had problems concentrating (CONC_DEP = 1), the expected
average number of episodes € is multiplied by €%, compared to an expected
count of €® for a person for whom cONC_DEP = 0. Similarly, an increase of one

year in age increases the estimated number of episodes by a factor of €™ . For
example, a respondent with concentration problems who is two years older than
another respondent who had no concentration problems is expected to have

ewe¥e®™ epjsodes compared to only e episodes for the younger person without
concentration problems.

The random part of the model is represented by €“°, which denotes the variation in
average count of depression episodes over PSU and between respondents (or, in
other words, over respondents nested within PSuU). For a Poisson distribution, the
assumption of normality at level 1 is not redlistic, as the level-1 random effect can
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only assume a number of distinct values. Thus, this random effect cannot have
homogeneous variance.

3.2.2.2 Setting up the analysis

Open the SuperMix spreadsheet nesarc_poi.ss3 used during the exploratory analysis.
From the main menu bar, select the File, New Model Setup option. The Model Setup
window that appears has six tabs. In this example, only three tabs are used: the
Configuration, Variables, and Advanced tabs.

=10
|£ariables| Starting Valuesl Eatlernsl Advanced | Linear Tranzfarms
Title 1: |Level 2 Paizgon log model
Title 2: [NESARL data
Dependent Wariable Type: Icount j Lewel-2 1D IPSU j
Dependent Yariable: IN_DEF’ j Lewvel-31Ds: I j
Wiite Bapes Estimates: Ino j
Corveergence Criterior: |U.UUU'I
Mumber of lterations: [100
Migsing Values Prezent: |falze j Generate Table of Means: lm
Usze the armow keys or click on the desired tab ta zelect the categary of interest far the maodel.

The Configuration screen is the first tab on the Model Setup window. It enables the
user to define the outcome variable and the level-2 and level-3 IDs. Some other
settings such as missing values, convergence criterion, number of iterations, etc. can
be specified here. For all the available settings, please refer to chapter XXXX. To
obtain the model we discussed, start by selecting the outcome variable N_DEP from
the Dependent Variable drop-down list box. Indicate that it is a count variable by
selecting the count option from the Dependent Variable Type drop-down list box.
Next, describe the hierarchical structure of the data by selecting the level-2 1D, PSu,

13



from the Level-2 IDs drop-down list box. Enter a title in the Title text boxes, and
proceed to the variables screen by clicking on this tab.

The Vvariables screen is used to specify the fixed and random effects to be included
in the model. To include the variables CONC_DEP and AGE_DEP as predictor
variables, check the E check boxes next to the variables' names. Note that, as the
variables are selected, the selected variables are listed in the Explanatory Variables
grid. After selection, the screen below is obtained. Note that the Include Intercept
check boxes in the Explanatory Variables grid and L-2 Random Effects are checked
by default, indicating that an intercept term will automatically be included in the
fixed and random parts of the model.

¥ Model Setup o ] 4
LConfiguration  Wariables |§tarting Values' Eattems' deancedl Linear Transforms
Available | E | 2 Explanatary Yariables L-2 Randam Effects |

PSU - COWC_DEP

WEIGHT r AGE_DEP

COMC_DEP W

AGE_DEP |~

M_DEP -

¥ Include Intercept

V' Include Intercept

Select the columns of the spreadsheet to be used az explanatary variables and random effects.

As mentioned previoudly, the models based on the NESARC data are fitted using
adaptive rather than full quadrature. The final step of model specification is to
request the use of adaptive quadrature, and thisis done on the Advanced tab.
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Click on the Advanced tab, and request adaptive quadrature using the Optimization
Method drop-down list box. Do not change the number of quadrature points from the

default displayed (10).

% Model Setup: nesarc_poil.mum — 0] ]
Qonfigurationl Ealiablesl Starting Valuesl Patterns  Advanced |I=inear Transformsl
— General Settings Time Settings
Incorporate Time Offzet; Ino ﬂ

Unit *eighting; I equal j

Optirizatiofn bMethod: || di=ga=t ==
Mumber of Quadrature Points: |1 1}

— Dependent [Count) Y anable Settings
Digtribution Madel: IPoisson j

Estimate Scale: Inone j

Select the optimization method.
The default iz non-adaptive quadrature.

Before running the anaysis, the model specifications have to be saved. Select the
File, Save As option, and provide a name (nesarc_poil.mum) for the model
specification file. Run the analysis by selecting the Run option from the Analysis

menu.
3.2.2.3 Discussion of results

Portions of the output file nesarc_poi.out are shown below.

Program information and syntax

As shown below, the syntax for the model setup is printed in the output file. The
first line of the syntax shows the option Model = Count, which indicates the outcome
variable is a count variable. The Options syntax line corresponds to the settings on
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the Configuration screen. The Link = log and Distribution = Poi options specify the use
of aPoisson distribution with alog link function for the fitted model.

~i0i x|

[
The following lines were read from file CiZProgram Files'\SuperMixhcount'nesarc poil.inp _J

Model=Count ;

Options Converge=0.0001 Maxiter=100 Bayes=No NJuadPT3=-10;
Link=log;

Distribution=Poi;

Scale=none;

Varnames= DPEU WEIGHT CONC_DEP AGE DEP H_DEP intcept;
Titlel=Lewvel Z Poisson log model;

TitleZ=NESARC data;

DataFile=C:%WProgram Files'\SuperMixhcountinesarc_poil.dat;
LewelZID= PEU;

Dependent= H_DEF;

Predictors= intcept CONC_DEP AGE DEF;

LZPandom= intcept;

FixPatType=Free;

CovzZPatType=Correlated; LI

Save bz | Close |

Data summary

~Ioix

Model and Data Descriptions ;I

Sampling Distribution = Poisson
Link Function = Log
Number of Lewvel-Z Units jel=ly —J
Number of Lewel-1 Units 138l
MNumber of Lewvel-1 Tnits per Lewvel-Z Unitc =

g 1 1 5 5 5 1 £ 1 1 z 1

3 31 1& 3 1 7 5 3 z 1 9 1

7 ) 2 zZz 2 L 2 z 1 1 1 Z

£ £l = ZE z 10 4 1 4 4 10 z

12 7 £ s z 10 7 o] 1 & [ 1

3 g 4 3 1a s 4 Z 1 & z 1

1& 1z 5 3 7 3 1 & 4 g ) 3

z zZ0o g 1 3 4 z 3 1 7 1 z

4 2 2 4 9 L 1 el Z 7 Z Z

] K} o] K} 11 £ & 1 7 Z £ Z &

4| | »

Save fg... | Cloze |

A description of the hierarchical structure follows the syntax: data from a total of
395 PsuU and 1981 respondents were included at levels 2 and 1 of the model. In
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addition, an enumeration of the number of respondents nested within each of the
395 PSUs is provided.

Descriptive statistics

The data summary is followed by descriptive statistics for all the variables included
in the model. The mean of 1.8970 and standard deviation of 2.3304 are reported for
the outcome N_DEP indicating that, on average, 1.8970 episodes of depression were
recorded.

% nesarc_poil.out o ] 4
[
g===================== ================g
| Descriptive statistics for all the wariables in the model |
g===================== ================q
Standard 1
Variahle Minimum Mazximan Mean Deviation
N _DETD 1.0000 29,0000 1.2370 Z.3304
intcept l.0000 1. 0000 l.0000 a.oooo
CONC_DEP g.oooo 1. 0000 0.2204 0.327E4
AGE_DEP L.oooo 4. 0000 2z.1100 1L 2828
-
4| »
Save bz | Claze |

Descriptive statistics are followed by the results for a fixed-effects-only moddl, i.e. a
model without random coefficients.

Fixed effects results

At the top of the final results, the number of iterations required for convergence of
the iterative procedure is given. Next, the number of quadrature points per
dimension is reported which, in this case, is the default number of points. The log
likelihood and the deviance, which is defined as —2InL, are listed next. For a pair
of nested models, the difference in —2InL values has a y* distribution, with
degrees of freedom equal to the difference in number of parameters estimated in the
models compared.
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~ioix

=
g==========================================g
| Optimization Method: Adaptiwve Quadrature |
g==========================================g
MNumber of guadrature points = 10
MNMunmber of free parameters = 4
Nunher of iterations used = 3
-Z1lnl {(dewiance statisztic) = 7001 _Z9533
Akaike Information Criterion 003, 29533
Schwarz Criterion 7031l.66076
Estimated regression weights
Standard
Parametear Eztimate Error = Value P Walue
intecept 0.798z2 0.0&41 1Z.4481 0.0000
CONC_DEP 0.29E2z2 0.0510 E_TE78 0.0o00o
AGE DEP -0.01&5 0.001z -13.9444 0.000o _lj
1| | »

Save Az | Llose |

The estimated intercept is 0.7982, which means that the average number of
depression episodes is €”**=2.2215, implying that on average the number of
episodes is about two. The estimated coefficient for CONC_DEP is 0.2922, which
indicates that respondents who had trouble concentrating on things tended to have

2.2215€"*%=(2.2215)(1.3394)=2.9754 episodes at the same age as respondents

without concentration problems. The estimate of the effect of age at the onset of the
first episode (AGE_DEP) shows that the onset age does not affect the number of
episodes much, since €°®=0.98. A dight reduction in the expected number of
episodes is expected with increasing age. If one compares two typical respondents
with reported concentration problems, but with one respondent ten years older than
the other, one would expect the older respondent to have
(2.2215)(1.3394) °°"**® =2.5229 episodes, compared to 2.9268 expected episodes

for the younger respondent. In other words, the longer it takes for the first episode to
occur, the fewer episodes a respondent is expected to have. Of course, it has to be
kept in mind that the younger a respondent is at the first episode, the longer that

18



person must live with the condition and thus the more time there is for subsequent
episodes to occur.

Random effects results

The output for the level-2 random effect variance term follows next. The estimated
variation in the average estimated N_DEP at level 2 is 0.1347, which is highly
significant. Respondents are different in terms of their average expected number of
episodes, holding all other variables constant.

% nesarc_poil.out -0l x|
[
Estimated level Z wvariances and covariances
Standard

Parameter Estimate Error z Walue P Value

intcept//intcept 01347 0.0154 7.3058 0. aooa —
-

« »

Save bz . | Cloze |

Level-1 variation for Poisson distribution

The variance-to-mean ratio is a measure of the dispersion of a probability
distribution:

2
. .o

R = variance-to-mean ratio= —
U

For the Poisson distribution, where the variance equals the mean, thisimplies R=1.
Thus, we use a value of one as our level-1 variation. In the cases when over-
dispersion (R>1) or under-dispersion (R<1) is assumed, different level-1
variation values will apply. The details of these scenarios are not discussed in this
guide. Please refer to XX XXX for more details.
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3.2.2.4 Interpreting the results
Estimated outcomes for groups: unit-specific results

First, we substitute the regression weights and obtain the following function for
|og( N_DEP, ) :

log(N_DEP, ) =By, + b1 x CONC_DER, +bxo x AGE_DER,
— 0.7982+0.2922x CONC_DEP, —0.0165x AGE_DER,.

For example, at age 40, the estimated Iog(@lf’ij) for atypical respondent who
does not often have trouble concentrating (CONC_DEP = 0), we find that

|og( N_DEP, ) =By, + B, x CONC_DEP, + 3, x AGE_DEP,
= 0.7982+0.2922x CONC_DEP, —0.0165x AGE_DEP,

=0.7982+0.2922x 0—0.0165x 40
=0.1382.

Keeping in mind that we defined the relationship between A4 and the predictors as
log(4; )= Byt + By,
it follows that

A =e™3% _1.1482.

1]
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We can estimate the count of the occurrence of depression episodes for typical
individuals of different ages in the same way. Results are summarized in Table
XXX.1. The results show a decrease in the expected number of episodes with
increasing age, regardless of whether they had concentration problems or not.

Table XXX.1: Estimated number of episodes under the Poisson log model

AGE_DEP 10 20 30 40 50 60 70
CONC_DEP =1 2.5229]2.1391|1.8138|1.5379|1.3040| 1.1056 | 0.9374
CONC_DEP =0 1.8836|1.5971|1.3542|1.1482 | 0.9736 | 0.8255| 0.6999

The results in Table XXX.1 can also be presented graphically, as shown in Figure
XXX.4. We clearly see that the correspondents who often had trouble concentrating
(coNC_DEP = 1) have a higher estimated number of depression episodes. It also
shows that the number of episodesis expected to decrease as people get older.

Estimated number of depression episodes

10 \\\

0.s

H_DEP

—

T T T T T T
10 20 30 40 50 1] T
Age

|—I—CONC_DEP = Yes CONC_DEP = No |

Figure XXX.4: Expected number of episodes for two groups
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Level 2 ICC

The percentage of variance explained over level-2 units, or intraclass correlation
coefficient (ICC), iscaculated as

level-2 variation
level-1 variation + level-2 variation

ICC =

In this example, under the assumption that the level-1 variation is fixed at a value of
one, we have

0.1347

=———x100%=11.8%
1+0.1347

We can conclude that most of the unexplained variation in the outcome
(approximately 78%) is between measurements at the lowest level of the hierarchy.

3.2.3 A 2-level negative binomial model with 2 predictors
3.23.1 The model

In Section 3.2.2, a Poisson model was fitted to the data. It was also noted that a
Poisson distribution has an important property: the mean number of occurrences is
equal to the variance. The negative binomia distribution is an aternative
distribution that may also be used to describe the properties of count variables. If the
assumption of a Poisson distribution is reasonable, one would expect a model using
a negative binomial distribution with a very small dispersion parameter to produce
results that correspond closely to those obtained for the Poisson model. In this
section, we fit a negative binomial model, utilizing the same predictors and a small
dispersion parameter, to the NESARC data. Again, adaptive quadrature is used as the
method of optimization.
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Recall that the negative binomial distribution can be expressed as

1H(yi+1/05) § (Ofﬂi)y'
(yi +1)F(1/a) (1+05,Ui)yi+l/a

Fv)=r

with =(y, )= +au’® where o denotes an additional parameter and it can no

longer be assumed that the variance is a known function of the mean. We assume «
to be afixed parameter.

The model fitted to the data explores the relationship between N_DEP and the
variables indicating concentration (or lack thereof) and age, as represented by the
variables CONC_DEP and AGE_DEP.

Thelevel-1 model is
log| E(N_DER, ) | = 4, + 8, x CONC_DER, + 3, x AGE_DER,
Thelevel-2 model is

ﬂo:boo+\/io’ ﬂlzb.l.o and ﬂzzbm'

3.2.3.2 Setting up the analysis

Using the SuperMix spreadsheet nesarc_poi.ss3 and model specification file
nesarc_poil.mum from the previous section, we now set up a negative binomia
model for these data.
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Start by saving the model specification file under the new name nesarc_poi2.mum
using the File, Save As option. Next, click on the Advanced tab of the Model Setup
window. Thisis the only tab on which modifications have to be made to change the
previously specified Poisson model to a negative binomial model. Set the
Distribution Model t0O negative binomial, and the Dispersion Parameter t0 0.0001 to
obtain an Advanced tab as shown below. Also, request adaptive quadrature using

the Optimization Method drop-down list box. Do not change the number of
guadrature points from the default displayed (10).

|| B Model Setup: nesarc_poi2.mum ] [
| LConfiguration Ealiablesl Starting Values' Patterns  Advanced II__inear Transformsl
© 1 General Settings

Urit \Weighting: quual j

Optimization kMethod: Iadapti\re quadrature j

Mumber of Quadrature Points: |'| 0

" Dependent [Count] Vaniable Setings

Diztribution Model: |EEl el

Digpersion Parameter: IU.UDD'I

Select an appropriate distribution model.

Save the revised model specification file, and click the Analysis, Run option to start
the iterative process.
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3.2.3.3 Discussion of results
Portions of the output file nesarc_poi.out are shown below.
Fixed and random effect results

The estimated regression coefficients for fixed effects in the model are shown
below. Recall that the estimated coefficients of the intercept, CONC_DEP, and
AGE_DEP under the Poisson model in Section 3.2.2 were 0.7982, 0.2922, and
—0.0165 respectively. The estimated variation in the average estimated N_DEP at
level-2 was 0.1347, and highly significant. The similarity of the results obtained
under these two models indicate that the specification of a Poisson distribution
model is reasonable for this data.

% nesarc_poiz.out oy ] 4|
[
Estimated regression weights
Standard
Parameter Estimate Error z Value P Value
intcept Q. 798z O.0e4l 12,4471 a.oooo
CONC_DET Q.zZ9zz a.0El0 E.7Z70 a.oooo
AGE_DEP =0.0leb a.oolE =12.9420 a.oooo

Estimated level Z variances and covariances

gtandard J
Parameter Estimate Error z Value P VWalue
intcept/intcept 0.124& 0.01g24 7.3028 o.oooo il
1| »
Save bz, | Cloze
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3.2.4 Weighted 2-level models
3.24.1 Thedata

The sampling frame of many multistage surveys frequently entails selection of units
with known, but unequal, selection probabilities. This situation is the result of a
number of design factors, of which the cost of doing the survey is an important
consideration. When thisisthe case, it is appropriate to weight observations in order
to produce unbiased estimates of population parameters.

Recall from Section 3.2.1 that the data also included a weight variable. The variable
FINWT represents the NESARC weights sample results used to form national-level
estimates. The final weight is the product of the NESARC base weight and other
individual weighting factors. In this section, we explore the effect of inclusion of the
weights on the results obtained in Sections 3.2.2 and 3.2.3.

3.2.4.2 Setting up the analysis

The models remain the same, with only the selection of the weight variable on the
Advanced tab of the Model Specification screen to be added. Below, we show how
thisis donein the case of the Poisson distribution model.

Open the mode specification file for the Poisson distribution model
(nesarc_poil.mum) and click on the Advanced tab. Change the Unit Weighting field
from its default value of equal to differential. Next, select the variable FINWT from the
Assigned Weight drop-down list box that appears when the selection has been made
in the Unit Weighting field. The completed Advanced tab is shown below.
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a-;f"MudeI Setup: nesarc_poiZ.mum

Configuration Ealiablesl Starting Valuesl Pattemsz  Advanced |I__inearTlansfnlms|

— General Settings

Urit Weighting: | differertial =l

Lewvel-1 weight: [{RlREN

Time Settings

Incorporate Time Dffget: Ino

=101 ]

Level-2 wWeight: I

=

Optimization Method: Iadaptive quadrature j

Mumber of Quadrature Points: |1 0

— Dependant [Count] Y ariable Settings

Diistribution kModel: IPUisson j

Estimate Scale: Inone j

Select the column of the spreadsheet which containg the weight to be azsigned to each first level unit.

Save the specification file as nesarc_poi3.mum, and run the analysis.

3.2.4.3 Discussion of results

Results for this analysis are reported in Table XXX.2 below. The results from the
unweighted Poisson distribution model are included in order to facilitate evaluation

of the impact of the weights on the results.

Table XXX.2: Comparison of results for weighted

and unweighted Poisson

models
Parameter Unweighted model Weighted model
Estimate | Standard error | Estimate | Standard error
intcept 0.7982 0.0641 0.7225 0.0660
CONC_DEP 0.2922 0.0510 0.3055 0.0532
AGE_DEP -0.0165 0.0012 -0.0156 0.0013
Level-2 variance | 0.1347 0.0184 0.1378 0.1089
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Results for the two models are very similar, and interpretation of the results of both
models would lead to the same conclusions, both in terms of significance and in
terms of the expected number of depression episodes. However, this is more the
exception than the rule — users are cautioned to use weight variables whenever they
are available in order to prevent skewed or biased results that may occur when
weights are excluded in the analysis of a disproportionally drawn sample.
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3.3 Two-level models for count outcomes from ASPART data

3.3.1 The data

The data for this example are taken from a paper by McKnight and Van Den Eeden

(1993), who reported on the number of headaches in a two treatment, multiple
period crossover trial. Specifically, the number of headaches per week was
repeatedly measured for 27 patients. Following a seven day placebo run-in period,
subjects recelved either aspartame or placebo in four seven-day treatment periods

according to the double-blind crossover treatment design. Each treatment period
was separated by a washout day. The sample size is 122. Data for the first 10

observations of all the variables used in this section are shown below in the

form of a SuperMix spreadsheet window for aspart.ss3.

i aspart.ss3 =10l x|
||D Apply |
{110 | (B)_Headac| (0)_Periodt | (0 Period | (£]_Perioda | (F1_Period4 | (G]_Druasp | (HI MPerio [1] NTDavs | =

1 200 0.00 0.00 0.00 0.00 0.00 0.00 3.00 7.00]—|

2 200 5.00 1.00 0.00 0.00 0.00 1.00 3.00 7.00

3 200 200 0.00 1.00 0.00 0.00 0.00 3.00 7.00

4 5.00 3.00 0.00 0.00 0.00 0.00 0.00 5.00 7.00

5 5.00 0.00 1.00 0.00 0.00 0.00 1.00 5.00 7.00

B 5.00 200 0.00 1.00 0.00 0.00 0.00 5.00 7.00

7 5.00 0.00 0.00 0.00 1.00 0.00 1.00 5.00 7.00

8 500 0.00 0.00 0.00 0.00 1.00 0.00 5.00 7.00

3 13.00 7.00 0.00 0.00 0.00 0.00 0.00 5.00 7.00

10 1200 7.00 1.00 0.00 0.00 0.00 1.00 5.00 7.00| »
A LIJ

The variables of interest are:

0 IDisthe patient ID (27 patientsin total).
0 Headache isthe number of headaches during the week (from O to 7).

0 Periodl isaperiod 1 treatment indicator (1 for the first treatment period and

0 otherwise).

0 Period2 isaperiod 2 treatment indicator (1 for the second treatment period
and O otherwise).
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0 Period3 isaperiod 3 treatment indicator (1 for the third treatment period and
0 otherwise).

0 Period4 isaperiod 4 treatment indicator (1 for the fourth treatment period
and O otherwise).

0 DrugAsp indicates the type of drug being used for the treatment, (0 = placebo
and 1 = aspartame). 75 observations used placebo and 47 used aspartame.

0 Nperiods isthe number of periods the individual was observed (from 2 to 5).
0 NTDays isthe number of treatment daysin the period (from 1 to 7).

3.3.2 A 2level Poisson model with random intercept
3.3.2.1 The model

To model the relationship between the number of headaches during the week
(Headache) and the treatment indicators (Period1l to Period4) and the type of drug
administered (DrugAsp), the following Poisson regression model with a random
intercept may be used:

Iog(;li; ) = B, + B, x Periodl; + S, x Period2; + 3, x Period3,
+p3, % Period4; + f; x DrugAsp; +V,,

where /Ahj denotes the estimated mean number of headaches of patient i for
treatment period j; Periodl, , Period2;, Period3; and Period4; denote the values of
the dummy variables Period1, Period2, Period3 and Period4 for patient i for treatment
period j respectively; DrugAsp; denotes the value of the DrugAsp for patient i for
treatment period j; B,, B, B, Bs, B, ad S denote unknown parameters, and
Vv,, denotes the random intercept for patient i for i=12,...,27 and j=0,1,2,3.

Thismodel isfitted to the datain aspart.ss3 as described below.
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3.3.2.2 Setting up the analysis

Start by opening the SuperMix Spreadsheet aspart.ss3. Select the New Model Setup
option on the File menu to load the Model Setup window. On the Configuration tab,
enter the titles 2 level Poisson log random intercept model and ASPART data for the
analysisin the Title 1 and Title 2 text boxes respectively. The count outcome variable
Headache is selected from the Dependent Variable drop-down list box. The
Dependent Variable Type drop-down list box is used to indicate that the outcome
variable is a count. The variable ID, which defines the levels of the hierarchy, is
selected asthe Level-2 ID from the Level-2 IDs drop-down list box.

% Model Setup: aspartl.mum N ] |
i| Wariables ﬁtalting\ialuesl Eattemsl Advanced | Linear Transforms
Title 1; |2 level Poiszan lag randar intercept madel
Tile 2 [ASPART data
Dependent Wariable Type: Icount j LewelZ 1Ds: IID j
Dependent Y ariable: IHeadache ﬂ Lewel-3 IDs: I j

Wwiite Bayes Estimates: Imeans & [covariances j

Carvergence Criterian: IEI.DDD1

Murmber of Iterations: |1 0o

Mizging Walues Present: | falze j Generate T able of Means: Inu 'l

|Jze the arrow keys o click on the desired tab to select the categom of interest for the model.

Next, click on the variables tab to proceed with variable selection. The variables
Periodl, Period2, Period3, Period4, and DrugAsp are specified as the fixed effects of
the model by checking the E check boxes for Period1, Period2, Period3, Period4, and
DrugAsp in the Available grid. These actions produce the following Variables tab. By
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default, an intercept model is included in the fixed part of the model, along with a
random intercept at level 2.

% Model Setup: aspartl.mum o ] |
LCanfiguration | Startitig Valuesl Eatlernsl Advanced | Linear Transfarms
Available | E | 2 Explanatory * ariables L-2 Random Effects |

1D N Period1

Headache i Period2

Period1 W Period3

Period2 [ Period4

Period3 W[ Drugdsp

Period4 [

Diughsp W[

MPeriods i

NTDays [ ¥ Include ntercept

v Include Intercept

Use the amow keyz or click on the desired tab to select the categony of interest for the model,

Finally, we click on the Advanced screen and keep all the default settings as shown
below, except for the quadrature points which are set to 20. Before we can run the
analysis, we have to save the model specificationsto afile. Thisis accomplished by
using the Save option on the File menu to open a Save Mixed Up Model dialog box.
First enter the name aspartl.mum in the File name text box and then click on the
Save button to save the file. The analysisis run by selecting the Run option from the
Analysis menu. This produces the corresponding output file asparti.out.
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Model Setup: aspart1.mum

Canfiguration Eariablesl Starting Valuesl Patternz  Advanced |I__inearTransfnrrns|

— General Settings

Time Settings

=101 ]

Uit 'w/eighting: quual j Incorporate Time Offzet: Ino

Ophimization Method: Inon-adaptive quadrature j

Murnber of Quadrature Points: |2D

— Dependent [Count] Y arable Settings

Diiztribution Madel:

E stimate Scale: Inone j

Select ah appropriate distribution madel,

3.3.2.3 Discussion of results

Portions of this output file are shown below.
Data summary

'?:‘ SuperMix - [aspartl.out]
f? File Analysis ‘Window Help

~=1olx|
=& x|

Nunbers of chservations

Level 1 observations
Level & cbservations

1z2
z7

The mumber of lewvel 1 obserwvations per lewel £ unit are:
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The output file indicates that there are 27 subjects with 122 observations nested
within them. The number of observations per subject varies between 2 and 5.

Descriptive statistics and starting values

The descriptive statistics for al the variables is shown next. The variance of
Headache is 1.8863” = 3.5581, which is substantially larger than the mean 1.6803.
This might conflict with our assumption that the Poisson distribution is an
appropriate choice for these data. As pointed out in Section 3.2.3, this can be
verified by fitting a negative binomial model with a small dispersion parameter.

% SuperMix - [aspart1.out] i ] 5]
.‘? File Analysis Window Help o = |
Descriptive statistics for all wariables ;I

Variable Mindimuam Mazximuam Mean Stand. Dev.

Headache 0. ooooo 7.00000 1.63033 1.88630 _I
intcept 1. 00000 1.00000 100000 0.00000

intoept 1.00000 1.00000 l.00000 o.ooooo

Periodl 0. ooooo 1.00000 0O.Z2131 0.41l634

PericdZ 0. Qoo 1.00000 0204522 0405321

Periodl 0. ooooo 1.00000 0.12033 0.3288058

Periodd 0. ooooo 1.00000 0.17213 0.372058

Druglsp 0. ooooo 1.00000 0.328E2E 0.423886 j
Save s, | Cloze |

The starting values are given next.

% SuperMix - [aspart1.out] =10l x|

.‘? File Analysis Window Help o = |
Starting wvalues ;I
covariates 0.73E58 0.0201 0.0E543 -0.1622 -0.0364 0.1264
war. terms 0.Z&29

=

==*> The number of lewvel & cbserwations with non-wvarying responses
= z 7.41 percent

Save s, Cloze
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Following the listing of the starting values, SuperMix indicates that of the 27
subjects, 2 had response vectors that were non-varying. Thus, 2 subjects gave
identical responses at all time points that they were measured on.

Fixed and random effect results

The final results are shown next. The number of iterations needed for convergence
and the deviance information are given first, followed by the estimates.

'?:' SuperMix - [aspartl.out] =]

;g Eile Analysic  window Help =0 |
--------------------------------------------------------- 2l
* Final Besults - Maximum Marginal Likelihood Estimates *

Total Iterations = 324
Ouad Pts per Dim = EZ0O
Loy Likelihood = -Z02. 102
Deviance (-ZlogL) = 406 Z08
Didge = 0.000
Wariable Eztimate Stand. Error Z p-walus
intcept 0.Z4035 0.149E5% L.e0712 0.10203 {2}
Periodl 0o.0s031 022458 0. 24236 0.73z08  (2)
PeriodZ 0.03412 0.ZZ142 0.18410 0.87753 (2}
Periodl —-0_Z2923 0.249EE -0.31267 035827 (Z)
Periodd -0.18071 0.z4717 -0.65013 0.51557 (2}
Druglsp 0.2lE2& 0.le27g 1.32E2303 0.12882 ({2}
randon sffect variance term: expressed as a standard deviation
intcept 0. 64277 0.0EE1L 1l_6E395 o.ooooo (L)
note: (1) = l-tailed p-wvalue
{2) = EZ-tailed p-value J
-
Save ds.. | LCloze |

The random-effect standard deviation is estimated as .643, and although a Wald test
rejects the hypothesis that this parameter equals 0, use of the Wald test for testing
whether variance parameters equal zero is questionable, since the Wald test is based
on the assumption that parameters can assume any real value. Regarding the
regression coefficients, all effects are non-significant. The results indicate that the
model does not fit the data very well.
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Correlation of estimates

The output provides the correlation matrix of the maximum likelihood estimates as
shown below.

¥ SuperMix - [aspart1.out] i [m] 5]
.‘? File Analysis Window Help 8] x|
=
Correlation of the Marimum Marginal Likelihood Estimates
1 z 2 4 £ )
intcept Periodl PeriodZ Period? Periodd Druglhsp
1 intcept 1.0000
zZ Periodl =0.&e00 1.0000
3 PeriodZ -0.638& 0. 5885 1.0000
4 Period3? -0.&60&3 0.E5712 0.ElE& 1.0000
5} Periodd -0.&170 0. 57380 0,505 0.43877 l.0000
) Drughsp 0.0002 -0.4212 -0.Z8EE -0.3EE0 -0.3E9¢ Ll.o0o0
7 WarCowl -0_E3%3 -0_010& o.oo0g0 -0.0E3%  -0_0040 -0_00E7
7
VarCowl J
? YarCovl 1.0000
=
Save As... | LClose |

It isimportant to realize that these are not the correlations of the variables, but of the
parameter estimates. These correlations can be used to assess collinearity problems
in estimation.

3.3.2.4 3.3.2.4 Interpreting the results
Estimated outcomes for groups: unit-specific results

The expected number of headaches can be obtained in the following fashion. First,
we substitute the estimated coefficients in the modd formulation
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log( Headache, ) = B, + B, x Period + /3, x Period2,

+23 x Period3; + 24 x Period4; + 25 x DrugAsp;
= 0.24035+0.08031x Periodl; +0.03412x Period2;
—0.22923x Period3; —0.16071x Period4, +0.21536x DrugAsp; .

or, after taking exponents on both sides, as

Headache; = exp(0.24035 + 0.08031x Periody, +0.03412x Period2,
—0.22923x Period3; —0.16071x Period4; +0.21536x DrugAsp; ).

As an example, we calculate the expected number of headaches for atypical patient
to whom aspartame was administered (DrugAsp = 1).

During the first treatment period, we find that for such a patient

Headache; = exp(0.24035+ 0.08031+ 0.21536)
=1.7092.

The expected numbers of headaches for a typical patient (again with DrugAsp = 1)
for the second, third, and fourth treatment periods are calculated as

Headache; = exp(0.24035+ 0.03412 + 0.21536)
~1.6320,

Headache; = exp(0.24035 - 0.22923 + 0.21536)
=1.2542,
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and

Headache; = exp(0.24035- 0.16071+ 0.21536)
=1.3431

respectively. Complete results for al groups are given in Table XXX.2.
Estimated outcomes for groups: population-average results

The latent response variable model,
Yi = Zayby +XyiBey + &

makes the assumption that ¢; ~ LID(0,5%) . For a Poisson distribution it is assumed

that o2 =1. Under the assumption that v, and ¢, are independently distributed, it
follows that
2

. 2
oy, =z;®,z; +o.

The design effect d; is defined as

which, for the current model, may be calculated as

2
o var (v, )+1

d, =—r= (Mo)+1_) 4137
o 1

where var(v,,)=(0.64277)" =0.4132, with v,, denoting the random intercept
coefficient.
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The estimated population-average probabilities (Hedeker & Gibbons, 2006) are
obtained in a similar fashion as the unit-specific probabilities, after replacing the
exponent in the formula used for calculation of the estimated unit-specific

probabilities with exp = exp/,/d;  as shown below.

Headache; = exp[(0.24035+ 0.08031x Periody, +0.03412x Period2,
—0.22923x Period3, —0.16071x Period4,

+0.21536x DrugAsp, ) //1.4132].

The expected unit-specific and population average probabilities are summarized in
Table XXX.2. We see that there is very little difference in the estimated number of

headaches. This result is to be expected as the design effect is /1.4132 =1.1888.

Table XXX.2: Estimated unit-specific and population average results for groups

DRUGASP | Period | Estimated headaches | Estimated headaches
(unit-specific) (population-average)

0 1 1.3780 1.3096

0 2 1.3158 1.2597

0 3 1.0112 1.0094

0 4 1.0829 1.0693

1 1 1.7092 1.5697

1 2 1.6320 1.5099

1 3 1.2542 1.2099

1 4 1.3431 1.2817
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3.3.3 A 2-level Poisson log model with an offset variable
3.3.3.1 The model

The previous analysis assumed that the counts were al observed for the same
number of days. However, this was not the case since the number of treatment days
in the period did vary to some degree. Most of the counts were based on the full
seven days in the week; however, some observations were made only for 1 day in
the given week. To take this into account, we need to specify a so-called OFFSET
variable. The offset variable indicates the amount of time that each count is based
on. If OFFSET = no is specified, as was the case in the previous example, SuperMix
assumes that all counts are based on the same amount of time.

The offset variable is introduced into the Poisson model in the following way:
log (2 ) = log(offset variable) +[ X b, |

where Xx; represent the values of the covariates corresponding to level-1 unit |

nested within level-2 unit i and b, denotes the coefficient vector containing both
fixed and random effects.

In the current situation, the variable NTDays is the appropriate choice as the OFFSET
variable. The model to be fitted to the data now changes to:

log( Headache, ) =log(NTDays)+ (3, + 3, x Periodl, + 8, x Period2,
+p; x Period3; + g, x Period4, + f; x DrugAsp; +V,g).
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3.3.3.2 Setting up the analysis

To create the model specifications for this model, start by opening aspart.ss3 in a
SuperMix spreadsheet window and using the Open Existing Model Setup option on
the File menu to open the Model Setup window for aspartl.mum. On the
Configuration screen, extend the title in the Title 1 text box by adding the string "with
Offset Variable." Next, click on the Advanced tab of the Model Setup window. Select
yes from the Incorporate Time Offset drop-down list to activate the Offset Variable
drop-down list box. Select the variable NTDays from the drop-down list of Offset
Variable to produce the following Advanced tab.

Qonfiguratinnl Eariablesl Starting Valuesl Pattern:  Advanced |I=inear Transformsl

— General Settings Time Settings
Uit ‘w/eightifg: quual j Incorporate Time Offset: Iyes j
Offzet Wariable:

Optimization Method: Inon-adaptive quadrature j
MHumber of Quadrature Points: |2D

— Dependent [Count] Y ariable S ettings
Diztribution Model: IF'oisson j

Estimate Scale: Inone j

Select the column of the spreadsheet which contains the offset variable
indizating the period of time that each of the counts is based on.

Save the changes to the file aspart2.mum by using the Save As option on the File
menu and select the Run option on the Analysis menu to produce the output file
aspart2.out.
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3.3.3.3 Discussion of results
Fixed and random effect results

A portion of this output fileis shown below.

'?:' SuperMix - [aspart2.out] o ] |
3’3 Eile Analysic Window Help - |El|5|
————————————————————————————————————————————————————————— [

* Final Besults - Maxioum Marginal Likelihood Estimates *
Total Iterations = ll&
Quad Pts per Dim = E0
Log Likelihood = -E05_425
Deviance {(-Zlogl) = 410.2E1
Ridge = o.ooon
Wariable Estimate Stand. Error Z p-walue
intoept -1.4E5Z44 0.14344 —-10.12E74 0.oo0ooo (E)
Periodl 0.11783 0.z3074 0.510%E 0.605240 (2
PeriodZ 0.10322 0.Z1240 0. 50072 0.&8le82 (2}
Periodl -0.1lg375 0. 24720 -0. 688669 049222 (Z)
Periodd -0.04373 0.z4634 -0_17753 0.85310 (2
Druglsp 0.z2lie 0.lel4e 1.74071 0.08173 (2}
randon effect wariance term: expressed as a standard dewiation
intoept 1.07853 0.0g3E7 1Z_02414 0.oo0ooo (1}
note: (1) = l-tailed p-walue

[E) = Z-tailed p-wvalue j
Save s, | Cloze |

Results for this model differ from those obtained for the model without offset
variable discussed in the previous Section. While the overall trend in predictor
coefficient estimates is similar, the intercept is now estimated as -1.45244,
compared to 0.24035 previously. The variance in intercept over patients for this

model is estimated as (1.07699)° =1.1599 compared to (0.6428)" =0.4132
previously.

42



3.3.3.4 3.3.3.4 Interpreting the results
Estimated outcomes for groups: unit-specific results

The expected number of headaches can be obtained in the following fashion. First,
we substitute the estimated coefficients in the modd formulation

Iog(l—Te’edEe; ) =log(NTDays; )+ (B, + B, x Periodl, + 3, x Period2,
+ﬁ3 x Period3; + ﬁ4 x Period4; + ﬁs x DrugAsp; )
= log(NTDays; ) +(~1.45244 + 0.11789x Periodl, +0.10988x Period2,
—0.16975x Period3; —0.04373x Period4; +0.28106x DrugAsp, ),

or, after taking exponents on both sides, as

Headache; = NTDays, x exp(~1.45244+0.11789x Periodl, +0.10988x Period2,
—0.16975x Period3, —0.04373x Period4; +0.28106x DrugAsp, ).

As most observations had a value of NTbays = 7, we start by considering typical
patients with a full set of treatment days. We a so assume that DrugAsp = 1, in other
words, that aspartame rather than a placebo was administered.

During the first treatment period, we find that for such a patient

Headache; = 7 exp(~1.45244+ 0.11789 + 0.28106)
— 7exp(~1.05349)
= 2.4410.

The expected numbers of headaches for atypical patient (again with NTDays = 7 and
DrugAsp = 1) for the second, third, and fourth treatment periods are calculated as
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Headache; = 7 exp(—1.45244+ 0.10988 + 0.28106)

=2.4216,
HZoa’d_ac\he; = 7exp(—1.45244 - 0.16975+ 0.28106)
=1.8308,
and
ﬁem; = 7exp(—1.45244 - 0.04373+ 0.28106)
=2.0767
respectively.

For atypical patient with only 5 treatment days, the expected numbers of headaches
in each of the four treatment periods are 1.7436, 1.7297, 1.3077, and 1.4834
respectively.

When the expected numbers of headaches for a typical patient receiving aspartame
under the Poisson model without offset variable (see previous Section) and the
Poisson model with offset variable are compared, we clearly see the impact of the
inclusion of the offset variable on the estimated coefficients. These results are
summarized in Table XXX.3.

Table XXX.3: Comparison of results for Poisson models

Period Without offset With offset With offset
variable variable variable
(NTDays =7) (NTDays =5)
1 2.3553 2.4410 1.7436
2 1.6320 2.4216 1.7297
3 1.2542 1.8308 1.3077
4 1.3431 2.0767 14834
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Level 2 Bayes results

As requested during the model specification stage, the empirical Bayes estimates of
the random effects are written to the file aspart2.ba2. The first few lines of this file

are shown below.

'?:' SuperMix - [aspart2.ba2]

3’3 File analysis Window Help

8 [ S
=18 x]

| z
=
1z
16
13

RN A A nnintnin M Nl Wi n

=0
. 34327
-0,
S1le73l
-1.
—-o.
=0
-0
. 24445
-1.

.1lz09
-0,
04328
-0,
-0,
.383z28
.34464d
-0
Sleesl
-0,
-0
1110

EED14

z0347

1?7z

SZZ00

427032
33421

Q2ZE77
7zoel
7ass0
46048
2ELlel
7z04l

7aLoz

OoDOo0Oo0O0OOo0O0000O000000000000

. 34884
L BETEZ
-0le47

401LZ
449329
15541
lla4e
30825
30693
32294
37BEL
42452
44902
11756
41513
20EEE
60724
2E083
20842

-41510
-EEl4z
- E0764

intocept
intcept
intcept
intocept
intcept
intcept
intocept
intcept
intcept
intocept
intcept
intcept
intocept
intcept
intcept
intocept
intcept
intcept
intocept
intcept
intcept
intcept

Thefile mixreg.ba2 contains five pieces of information per individual:

o theindividua'sID,

o0 thenumber of repeated observations for that individual,
o the empirical Bayes estimate for that individual (which is the mean of the

posterior distribution),

0 the associated posterior standard deviation, and
o0 thename of the relevant random coefficient.

Since they are estimates of b, for each individual, the empirical Bayes estimates
are expressed on the standard normal scale. Inspection of these estimates indicates
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that subject 13 has a very high score. This person's estimate of 1.043 (with standard
deviation .016) suggests a very high level of headaches. This agrees well with the
raw data, which reveals that this person recorded 7 headaches on four occasions and
6 on the only other occasion.

Graphical displays

Figure XXX.5 is a comparison (represented by a dotted line) of the predicted
average number of headaches reported by each patient when taking a placebo (left
axis) as opposed to the predicted average number when the treatment is aspartame
(right axis). From the graphical display, it appears as if al of the lines (each
representing a patient) have a positive slope. The slopes become steeper as the
number of headaches increases. This suggests an increase, albeit small, in the
expected average number of headaches when aspartame is used. Note that patient
13, who reported a consistently high number of headaches at all occasions, was
excluded from this graph.

headaches
P

n
FRTEE |
vl
1

|

T T
placebo azpar tame

treatment

Figure XXX.5: Predicted average number of headaches for placebo and
aspartame
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Fitted line and observed trajectory
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Fitted line and observed trajectory Fitted line and observed trajectory
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Figure XXX.6: Fitted and observed trajectories

Figure XXX.6 isagraphical display of the fitted trgjectory (solid line) and observed
tragjectory (dotted line) for a sample of 6 patients. These displays are ordered from a
patient who reported a relatively small number of headaches at the different
treatment occasions to one who reported a relatively high number of headaches at
the treatment occasions. A study of the fitted and observed trajectories reveals that,
in genera, the model fit is best when the number of headaches is smaller and
becomes less accurate as the number of headaches increases. For patient 13, who is
not represented in the graphical display, the number of predicted headaches is
almost twice the number observed.

The fitted lines were obtained as

Headache; = NTDays, x exp(~1.45244-+ 0.11789x Periodl, +0.10988x Period2,
—0.16975x Period3, —0.04373x Period4; +0.28106x DrugAsp, ) + bio.

where bio is obtained from the aspart2.ba2 file, shown previoudly in this section.
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