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1 Introduction to mixed-effects models 

 

Hierarchical structures are often encountered in numerous research areas. Consider, 
for example, the study of the effect of administering medication, such as an 
antidepressant, over time to a patient diagnosed with depression. For each patient, 
the effect of the drug over time can be modeled in terms of the time since the start of 
treatment, and also in terms of any other information obtained at the time of each 
measurement during the study. Measures of family support at the time of 
measurement can also be incorporated into such a model. The outcome would be 
described as a function of the information collected at the measurement level, and 
could be viewed as a measurement-level model for each individual patient. 
However, the gender of the patient, and other characteristics that may influence the 
outcome but that do not change over time, cannot easily be accommodated in the 
model proposed, as the model is at a measurement, rather than a patient, level. It 
may also be of interest to compare patients in terms of their improvement 
trajectories, which is easier when outcomes are described in terms of patients rather 
than measurements.  

 

To allow us to study all of these areas of interest simultaneously, a model that 
acknowledges the data's inherent hierarchical structure (measurements nested within 
individual patients), and allows the study of both measurement- and patient-level 
models along with the way these models are related to each other, is needed. As 
patients may drop out during the study period, the model should also be suitable for 
the analysis of unbalanced longitudinal data where each individual may be 
measured at a different number of occasions, or even at different time points.  

 

In this chapter, data from a study described in Vonesh & Carter (1992) that focused 
on the assessment of high-flux hemodialyzers' in vivo ultrafiltration are used to 
illustrate the need for and basic characteristics of a mixed-effects regression model. 
While the eventual application of these findings will be in a medical field, the 
testing of the dialyzers discussed here may be of interest to any researcher who 
intends modeling repeated measures data. 
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The ultrafiltration rates of 20 high-flux dialyzers were measured at seven different 
transmembrane pressures. The unit of measurement for transmembrane pressure was 
dmHg, and the filtration rate was recorded in mL/hr. These data, also analyzed in 
Littell, Milliken, Stroup & Wolfinger (1996), are perfectly balanced in that all seven 
measurements are available for each of the hemodialyzers. The hemodialyzers, 
machines for filtering impurities from the blood, are the units within which the 
actual measurements are nested. Data for 10 of the dialyzers are shown in Table 1.1.  

 

Table 1.1: Data for 10 hemodialyzers from Vonesh & Carter data 

 
Device 
ID  

Supply  Pressure Rate  Device 
ID  

Supply  Pressure Rate  

11.000 1.000 28.500 1.500 16.000 1.000 23.500 3.600 

11.000 1.000 52.000 15.400 16.000 1.000 48.000 20.490 

11.000 1.000 100.500 32.520 16.000 1.000 101.000 41.880 

11.000 1.000 150.000 42.440 16.000 1.000 149.000 49.990 

11.000 1.000 198.500 48.570 16.000 1.000 199.000 57.670 

11.000 1.000 249.000 53.690 16.000 1.000 248.000 62.480 

11.000 1.000 299.500 53.660 16.000 1.000 300.500 62.150 

12.000 1.000 29.500 6.420 17.000 1.000 23.500 1.170 

12.000 1.000 51.500 20.250 17.000 1.000 48.500 17.680 

12.000 1.000 101.000 43.050 17.000 1.000 102.500 39.700 

12.000 1.000 148.000 58.110 17.000 1.000 151.500 52.680 

12.000 1.000 200.000 61.990 17.000 1.000 199.000 61.800 

12.000 1.000 248.000 60.910 17.000 1.000 251.000 61.480 

12.000 1.000 300.500 63.600 17.000 1.000 302.000 61.420 

13.000 1.000 25.500 3.880 18.000 1.000 26.000 1.890 

13.000 1.000 50.000 19.160 18.000 1.000 51.500 18.510 

13.000 1.000 98.000 37.650 18.000 1.000 97.000 37.220 

13.000 1.000 149.000 47.900 18.000 1.000 150.500 52.350 

13.000 1.000 201.500 54.490 18.000 1.000 199.000 60.910 

13.000 1.000 251.000 53.170 18.000 1.000 250.000 62.980 

13.000 1.000 298.000 59.350 18.000 1.000 299.500 64.770 

14.000 1.000 40.000 10.940 19.000 1.000 35.500 10.410 
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Table 1.1: Data for 10 hemodialyzers from Vonesh & Carter data (continued) 

 
14.000 1.000 47.000 13.470 19.000 1.000 48.000 19.320 

14.000 1.000 101.000 35.350 19.000 1.000 102.500 43.770 

14.000 1.000 151.500 45.340 19.000 1.000 150.000 51.230 

14.000 1.000 198.000 49.440 19.000 1.000 199.000 58.090 

14.000 1.000 251.000 53.630 19.000 1.000 250.000 54.090 

14.000 1.000 300.000 56.430 19.000 1.000 300.500 62.010 

15.000 1.000 29.000 4.050 20.000 1.000 28.000 5.710 

15.000 1.000 49.500 16.590 20.000 1.000 50.500 20.500 

15.000 1.000 101.500 40.520 20.000 1.000 100.000 39.410 

15.000 1.000 152.000 52.840 20.000 1.000 149.000 50.100 

15.000 1.000 202.000 60.440 20.000 1.000 200.000 55.160 

15.000 1.000 250.000 64.830 20.000 1.000 250.500 61.190 

15.000 1.000 297.500 63.830 20.000 1.000 302.000 50.720 

 

Of interest here is the relationship between the ultrafiltration rate, denoted as Rate in 
Table 1.1, and the associated transmembrane pressure, indicated as Pressure in the 
table. The blood flow rate, as represented by the column with header Supply, is also 
of potential interest. 

 

The data as a whole can be viewed as having a hierarchical structure, with 
measurement-related characteristics of the hemodialyzers at seven measurement 
occasions; all measurements for each dialyzer are therefore nested within that 
dialyzer. The dialyzers, in turn, form the next level of the hierarchy, and any 
machine-specific characteristics may be used as potential predictors at this level. 

Fixed-effects regression ignoring data clustering  

Before proceeding with a mixed-effects analysis of these data, we first look at a 
fixed-effects  analysis that ignores the clustering of measurements within dialyzers. 
Note that SuperMix can be used for this purpose, and that the analysis is essentially 
equivalent to performing a traditional multiple linear regression analysis using 
maximum likelihood, and not least squares, estimation.  
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Using the information for the second set of 10 dialyzers, for which 70 measurements 
were available, we now explore the relationship between the Rate of filtration, 
which serves as our outcome variable, and the transmembrane Pressure at which the 
measurement was made. Line plots of  this relationship for some of the dialyzers are 
shown in Figure 1.1. These graphs were obtained using SuperMix's exploratory 
graphs option. Detailed information on how to create such graphs are given 
elsewhere in the manual. 

 

It is clear from these graphs that the relationship between the observed Rate and 
Pressure at which the measurement was made will be inadequately described by a 
first-order polynomial. For dialyzer 12 the slope of the line is steep initially, but the 
curve flattens out at a pressure of about 100 dmHg. This trend is not as clearly 
observed for the other dialyzers. Also, there seems to be evidence of differences in 
the rates of dialyzers 18, 19, and 20 towards the higher end of the pressure scale. 
We conclude that a higher-order polynomial will probably offer a better description 
of the relationship, and that it may also be wise to make provision for differences 
between devices (dialyzers).  
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Figure 1.1: Exploratory graphs of rate versus pressure for hemodialyzers 

 

Figure 1.2 represents the same lines for all ten dialyzers simultaneously. While there 
seems to be little difference in their behavior at the lower level of the pressure scale, 
the divergence in the plotted lines at higher pressure levels can be seen clearly. 

 



                                                                                                                                                                                                                                                                                               

 

 

 

9 

 
Figure 1.2: Exploratory graphs of rate versus pressure for 10 hemodialyzers 

 

In terms of the variables shown in Table 1.1, we now fit a model of the form 

 

      2
0 1 2(PRESSURE) (PRESSURE)ij ij ij ijy e                            (1.1)  

 

where ijy  denotes the Rate measurement at time j (j = 1, 2, 3, …7) for hemodialyzer 

i . (PRESSURE)ij  indicates the associated transmembrane pressure, 2(PRESSURE)ij  

the squared value of the pressure, and ije  measurement error. The coefficients 0 , 

1 , and 2  are the fixed, but unknown, parameters to be estimated. The ije  are 

assumed to have a normal distribution, with mean 0 and variance 2 . 

 

For this analysis, we obtain estimates of  0 , 1 , and 2  of –6.5847, 0.5281 and –
0.0011 respectively. The estimated Rate is plotted over time in Figure 1.3. In 
addition, an estimate of 2  of 41.34095 was obtained. The results show that the 

average predicted Rate,  0 , at a pressure of zero is –6.5847. However, a value of 0 

is outside the range of 23.50 to 303.00 of observed pressure values. As such, the 
interpretation of the estimate of 0  in this context is difficult, and we would rather 

look at the predicted rate for the lowest observed pressure. Another alternative is to 
transform the values of the variables Pressure and Pressure 2  in such a way that 
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interpretation of the intercept estimate is meaningful. Examples of such 
transformations are given in the chapters to follow. 

 

The coefficient representing the effect of the predictor Pressure, 1 , indicates a 
predicted increase in Rate with increased pressure: an increase of 0.52807 mL/hr in 
the Rate is expected for each increase of 1 dmHg in transmembrane pressure. The 
coefficient 1  is commonly referred to as a "slope" coefficient, as it indicates both 

the direction of the relationship between the predictor and the outcome, and the 
magnitude of the expected change in outcome associated with changes in the 
predictor.  

 

Similarly, the relationship between the squared values of transmembrane pressure 
(Pressure 2 ) and the ultrafiltration rate is estimated to be negative: higher values of 
pressure are predicted to lead to lower predicted rates. The statistical significance of 
this estimated coefficient indicates that the relationship between pressure and 
filtration rate is not truly linear, and that the use of a higher-order polynomial may 
provide a better description of the data. However, while the estimates of 1  and 2  

are of interest individually, when evaluating the relationship between the 
transmembrane pressure and the ultrafiltration rate, both estimates should be taken 
into account. A increase of 1 dmHg in pressure will lead to a change in expected 
filtration rate of 0.52807(1) –0.0011(1) = 0.52697. From this result, we conclude 
that while the filtration rate and pressure generally shows a positive relationship, 
this relationship is bound to change with increased pressure. The higher the 
pressure, the bigger the impact of the estimate of 2  in the prediction of the rate 

through use of the formula  

 

 

    2
0 1 2(PRESSURE) (PRESSURE)ij ijijy     

 
 

The lowest observed pressure is 23.50, and the predicted rate of filtration is thus 
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  2
0

2

0.52807(PRESSURE) 0.0011(PRESSURE)

-6.5847+0.52807(23.5)-0.0011(23.5)

6.5847 12.4096 0.6075

5.2174.

ij ijijy   


   


 

 

For the highest observed pressure of  303, the predicted filtration rate follows as 

 

 

 2-6.5847+0.52807(303)-0.0011(303)

6.5847 160.0052 100.9899

52.4306.

ijy 

   
  

 

The fixed-effects regression line over all measurements is shown in Figure 1.3 
below. 
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Figure 1.3: Fixed-effects regression line for 10 dialyzers 

 

Fixed-effects regression including data clustering  

As noted by Hedeker, Gibbons & Flay (1994) and others, ignoring the data 
clustering often results in statistical tests which are too liberal, resulting in falsely 
rejecting the null hypothesis too often. In terms of our data, where multiple 
measurements "belong" to each dialyzer, it is reasonable to expect that 
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measurements for a given dialyzer may be more similar to each other than to any 
other measurement, regardless of the dialyzer it was obtained for. Thus, it may be 
reasonable to assume that the measurements for a given dialyzer may be correlated. 
In addition, if it is indeed true that the transmembrane pressure applied impacts on 
the transfer rate, ignoring the clustering effect may lead to erroneous conclusions 
concerning the relationship between pressure and transfer rate.  

 

To start addressing these concerns, we modify the previous model to take the 
clustering of measurements within dialyzers into account. We do so by fitting a line 
similar to that given in Equation (1.1) for each individual dialyzer. Table 1.2 shows 
the estimates of 0  and 1  for individual dialyzers, and Figure 1.4 a graphical 

representation of the results. 

 

Table 1.2: Regression results for 10 dialyzers: taking clustering into account 

 

 

 

Device Intercept Pressure (Pressure)2 

11 -9.206 0.486 -0.001 

12 -9.024 0.629 -0.001 

13 -5.115 0.500 -0.001 

14 -5.008 0.454 -0.001 

15 -10.885 0.602 -0.001 

16 -5.255 0.537 -0.001 

17 -10.614 0.608 -0.001 

18 -10.582 0.590 -0.001 

19 -3.645 0.520 -0.001 

20 -7.911 0.589 -0.001 

overall -6.585 0.528 -0.001 



                                                                                                                                                                                                                                                                                               

 

 

 

14

The estimated coefficients for the intercepts and time slopes of the dialyzers (  0  

and 1  respectively) in Table 1.2 show that the predicted intercepts of dialyzers 
differ considerably. Device/dialyzer number 15  has a predicted initial transfer rate 
of -10.885, which is considerably lower than the predicted initial rate of -3.645 for 
dialyzer 19. Recall that in the previous analysis, we obtained a value of -6.585 for 


0 , which does not provide an adequate description of the initial status of any of the 

dialyzers except perhaps dialyzers 13, 14, 16, and 20. A "one size fits all" policy for 
obtaining an estimate of the initial status of patients is clearly inadequate, and does 
not describe the initial status for individual dialyzers satisfactorily. 

 

 
 Figure 1.4: Individual fixed-effects regression lines for 10 dialyzers 
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This conclusion is also apparent from Figure 1.4. While the differences in transfer 
rates at the lower end of the pressure range are not as clear from the graph as they 
are in Table 1.2, the graph indicates even larger differences between the dialyzers at 
high transmembrane pressure. Not only will individual differences in initial transfer 
rate between devices have to be addressed, but differences in their rates of transfer 
over the range of applied transmembrane pressure will have to be accommodated in 
the model.  

Fixed-effects regression with dummy variables  

Up to this point we have considered two approaches for the modeling of the transfer 
rates. In the first, all the data were pooled and a common regression model was 
fitted to the data. In the second approach, a regression line was fitted to each 
dialyzer's measurements. A summary of the estimated intercepts and slopes showed 
substantial between-dialyzer variation. The disadvantage of the second approach is 
that ten separate regression models are fitted. Ideally, a researcher would want to fit 
a single model that conveys information about between-subject variability.  

 

One approach would be to do a regression analysis with dummy variables. Table 1.3 
below shows the data for the first and last dialyzers. We use a dummy variable to 
represent each dialyzer, coded as follows: 

 

 

1 for dialyzer , , 1,2, ,10
0 otherwise.

jD j 




 
 

The following regression model is fitted to the data: 

 

 
       0 1 1 2 9 10 10RATE D D D PRESSURE .ij ijij ij ij ij

e        
 

 

This model allows for the estimation of individual intercept coefficients, but a 
common slope parameter 10 . 
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Table 1.3: Results of dummy variable model 

 
device    rate     D1    D2    D3    D4    D5    D6    D7    D8    D9    D10    Pressure 
11 1.50 1 0 0 0 0 0 0 0 0 0 28.5 

11 15.40 1 0 0 0 0 0 0 0 0 0 52.0 

11 32.52 1 0 0 0 0 0 0 0 0 0 100.5 

11 42.44 1 0 0 0 0 0 0 0 0 0 150.0 

11 48.57 1 0 0 0 0 0 0 0 0 0 198.5 

11 53.69 1 0 0 0 0 0 0 0 0 0 249.0 

11 53.66 1 0 0 0 0 0 0 0 0 0 299.5 

20 5.71 0 0 0 0 0 0 0 0 0 1 28.0 

20 20.50 0 0 0 0 0 0 0 0 0 1 50.5 

20 39.41 0 0 0 0 0 0 0 0 0 1 100.0 

20 50.10 0 0 0 0 0 0 0 0 0 1 149.0 

20 55.16 0 0 0 0 0 0 0 0 0 1 200.0 

20 61.19 0 0 0 0 0 0 0 0 0 1 250.5 

20 50.72 0 0 0 0 0 0 0 0 0 1 302.0 

 

Table 1.4 contains a summary of the results of this analysis. With the exception of 
the first and fourth dialyzers (represented by the dummy variables D1 and D4), the 
estimated coefficients associated with the individual dialyzers are all significantly 
different from zero at a 5% level of significance. From these results, we expect 
transfer rates for the second device to be much higher than for the first device, as 
reflected by the parameter estimates of 14.7153 and 5.2222 respectively. The 
transmembrane pressure also has a significant and positive relationship to the rate of 
transfer: for each increase of 1 dmHg in pressure, the rate of transfer is expected to 
be 0.1959 ml/hr higher. 
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Table 1.4: Results of regression model with dummy variables 
                                          

Variable     Parameter estimate  Standard error    t-Value  Pr > |t| 

D1        5.2222 3.9381 1.33 0.1899 
D2        14.7153 3.9385 3.74 0.0004 
D3         9.3364 3.9343 2.37 0.0209 
D4         7.3311 3.9463 1.86 0.0682 
D5         13.0271 3.9408 3.31 0.0016 
D6         12.6855 3.9312 3.23 0.0020 
D7         12.1007 3.9381 3.07 0.0032 
D8         12.6124 3.9347 3.21 0.0022 
D9         12.3179 3.9439 3.12 0.0028 
D10        10.1676 3.9397 2.58 0.0124 
Pressure  0.1959 0.0117 16.68 <.0001 

 

Although this model is a compromise between the models for pooled data and 
separate models for dialyzers' data, the number of parameters to be estimated is 
proportional to the number of dialyzers and does not allow for the estimation of 
individual slopes. These issues have led researchers over time to develop mixed-
effects models. 

Random-intercept model  

From the results of the previous models, we concluded that it is not reasonable to 
assume that the initial transfer rates of dialyzers, or their change in transfer rate with 
increased transmembrane pressure, can be described adequately by average intercept 
and slope estimates while the clustering of measurements within individual 
dialyzers was ignored. While the second of these analyses, where fixed-effects 
regression lines were fitted for each dialyzer and thus the clustering of 
measurements was acknowledged, provided better information per dialyzer, neither 
of these models allows us to obtain average intercept or slope coefficients while 
simultaneously incorporating the effect of measurements nested within individual 
devices.  
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To study differences in the behavior of dialyzers with pressure changes, while 
acknowledging the clustering of measurements and allowing for differences 
between devices in initial transfer rate, a random-effects model is needed. From the 
results obtained thus far, we will have to accommodate not only differences in initial 
status between dialyzers, but also differences in the slopes of the rates over the 
range of applied transmembrane pressure.  

 

We start by specifying a model which takes clustering of measurements within 
dialyzers into account, while allowing the initial transfer rate to vary from device to 
device. This model, a so-called random-intercept model, contains both fixed and 
random effects, and can be expressed as 

 

 2
0 1 2 0(PRESSURE) (PRESSURE)ij ij ij i ijy v e                 (1.2) 

 

where ijy  denotes the Rate measurement at measurement j (j = 0, 1, 2, 3, 4, 5, 6, or 

7) for dialyzer i , (PRESSURE)ij  the associated transmembrane pressure, 
2(PRESSURE)ij  the squared value of (PRESSURE)ij , and ije  measurement error. 

The coefficients 0 , 1  and 2  are the fixed, but unknown, parameters to be 

estimated. The coefficient 0iv , in contrast, denotes a random parameter, and 

represents the amount by which the intercept of dialyzer i  differs from the average 
(fixed) intercept for all devices, as represented by  0 . By including 0iv , we allow 

intercepts to vary randomly over the dialyzers. We assume that 0iv  is normally 

distributed with mean 0 and variance (2)  and that the ije , too, as in the first model, 

have a normal distribution with mean 0 and variance 2  for all dialyzers. In 
contrast to the model in (1.1), where all unexplained variations in transfer rates were 
captured by ije , the current model assumes that there are two potential sources of 

unexplained variation: variation between measurements as represented by ije , and 

variation between dialyzers in terms of their intercepts, as represented by 0iv . 

Viewing the measurements as the lowest level of a nested structure in our data, with 
measurements nested within devices, we refer to 2  as the level-1 (measurement-
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level) variance and to (2)  as the level-2 (dialyzer-level) variance. In fitting this 

model, data from all 20 devices are used. The results of the analysis are reported in 
Table 1.5. All of the estimated coefficients are statistically significant at a 5% level 
of significance. We see that the rate of transfer is expected to increase with an 
increase in pressure. However, as pressure increases, the squared value of pressure 
increases quickly, and the small negative coefficient for this will lead to larger 
decreases in transfer rate at high pressures. At first glance, these estimates indicate a 
somewhat nonlinear curve. 

 

Table 1.5: Results of random-intercept model 

 
Parameter Estimate Standard error 

Intercept -6.56547 1.56214 

Pressure 0.52792 0.01840 

Pressure 2  -0.00114 0.00006 

0var( )iv  16.28786 6.29943 

var( )ije  25.05420 3.23435 

 

What is really interesting, and something we have not been able to look at 
previously, is the amount of variation within and between devices. While most of 
the variation is at measurement level, i.e. within devices, as indicated by var( )ije  = 

25.0542, there is a sizable amount of variation in the intercepts of the devices 
themselves. As this estimated coefficient is statistically significant, it indicates that 
it is not adequate to try and describe the intercepts of the devices using a single, 
common fixed effect as we have done previously. If we had more characteristics of 
the individual devices, these could have been added to our current model in an 
attempt to explain away the variation in device intercepts. Likewise, we could have 
used any other type of measurement made at the measurement occasions to explain 
more of the residual variation. In Chapter XXX, models with a continuous outcome 
are described in which the use of additional characteristics at both levels is 
illustrated. 
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In addition to these estimates, which describe the average estimated intercept and 
slope over all devices, we also obtain estimates for the unique deviations from the 
intercept associated with each of the individual devices. The estimates of the 
deviations of the predicted from the observed values are depicted graphically in 
Figure 1.5. The residuals associated with devices 11 and 20 are highlighted: 
residuals for device 11 are shown as square black boxes, and those for device 20 as 
asterisks. We see that almost all the residuals are within a (-10,10) interval. For 
device 11, the residuals are closer to zero in value at lower transfer rates, but vary 
quite a bit more above a transfer rate of 40. The residuals for device 20, however, 
vary more over the entire rate of transfer range.  

 

 
Figure 1.5: Level-1 residuals plotted against level-1 predicted values 
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Another way to look at these results is to inspect confidence intervals for the 
deviations of the device intercepts from the estimated value of -6.565. These are 
shown in Fig 1.4. The units appear in numerical order, and we can see that the 95% 
confidence interval for the intercept of device 20 is approximately centered above 0, 
while that of device 11 is centered below zero. Looking at the confidence intervals 
for devices 1 and 12, our result that there is significant variation in the device 
intercepts makes sense. 

 

 
 

Figure 1.6: 95% confidence intervals for 20 devices 

Intraclass correlation 

The intraclass correlation is a measure of the degree of dependence of the higher-
level units, in this case the devices. It is realistic to assume that measurements from 
the same device are more alike with respect to certain traits than measurements from 
different devices. 
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For data having a two-level hierarchical structure, the intraclass correlation   is 
defined as the proportion of the variance in the outcome variable that is between the 
second-level units: 

 

between group variability

between group variability + within group variability
   

  

In the current example, we obtain   as 

 

 

 16.28786
0.39398.

16.28786 25.05420
  

  
 

As pointed out by Kreft and de Leeuw (1998), if intraclass correlation is present, as 
is usually the case when we are dealing with clustered data, the assumption of 
independent observations in the traditional linear model is violated. They also 
pointed out that tests of significance lean heavily on the number of independent 
observations and that the existence of intraclass correlation makes the test of 
significance in traditional linear models too liberal. Barcikowski (1981) shows that 
in most applications of analysis of variance, the standard errors of the parameter 
estimates will be underestimated and that even a small intraclass correlation can 
inflate the alpha level substantially. 

 

While the random-intercept model has allowed us to accommodate some of our 
modeling concerns for an unbalanced data set such as the nesting of measurements 
within devices and allowing intercepts to vary over devices, other concerns remain. 
From the results shown in Table 1.5, we know that there is a sizable amount of 
variation between devices, variation that may be explained by the inclusion of 
additional device characteristics in the model. To address these concerns, extended 
models are required. Examples of such models, based on the Reisby data, are shown 
in detail in Section XX.X.  

 


